LEE- Tekstil Mühendisliği-Doktora

Bu koleksiyon için kalıcı URI

Gözat

Son Başvurular

Şimdi gösteriliyor 1 - 2 / 2
  • Öge
    Akrilik filament ipliğin tekstüre edilmesi
    (Lisansüstü Eğitim Enstitüsü, 2021) Mutlu, Aras ; Demir, Ali ; 709844 ; Tekstil Mühendisliği
    Akrilik elyaf, en eski sentetik tekstil elyaflarından biridir. 2000 yılında dünya elyaf kullanımının yaklaşık %5'lik kısmını akrilik elyaf oluştururken bu oran 2020 yılında %1 mertebesine gerilemiştir. Üstelik birçok elyafın kullanım miktarı artmakta olmasına rağmen akrilik elyafta düşüş trendi devam etmektedir. Tüm bu akrilik elyaf tüketimi elyaf (kesikli lif) formundadır. Filament formunda akrilik ipliğin tarihçesinin 1950'li yıllara kadar dayanmasına ve birçok üreticinin akrilik filament iplik üretimine başlamış olmasına rağmen çeşitli nedenlerle ticari olarak yaygınlaşması yakın zamana kadar mümkün olmamıştır. Bu nedenle, akrilik filament ipliğin tekstüre edilmesi üzerine yaygın bir bilimsel literatür ya da ticari bilgi bulunmamaktadır. Aslında akrilik elyaf üretimi esnasında uygulanan "kıvırcıklandırma" işlemi, termomekanik tekstüre yöntemlerinin tüm temel aşamalarına sahiptir. Tüm dünyada kişi başına düşen elyaf tüketimi artarken filament iplik üretiminde de önemli artış yaşanmaktadır. Yıllık filament iplik üretimi çok daha hızlı bir artış göstermektedir ve 2013 yılından itibaren kesik elyaftan üretilen ipliklerin üretim miktarını da geçmiştir. Filament iplik, enerji ve iş gücü yoğun, detaylı ve uzun süren iplik eğirme proseslerini ortadan kaldırmasının yanı sıra final ürüne kazandırılan mükemmel fiziksel özellikler ile de hem düşük maliyetli hem de yüksek performanslı ürünler elde edilebilmesine olanak sağlamaktadır. Ancak filament ipliklerin en önemli dezavantajlarından biri düz ve bükümlü formda parlak ve suni bir görüntüye sahip olmasıdır. Bu haliyle birçok kullanım alanı için kabul görmeyen bir ürün halindedir. Tekstüre işlemi, filament ipliklerin daha doğal görünüm ve tutuma sahip hale getirilmesi için uygulanan bir prosestir. Tarih boyunca gerçek büküm-büküm açma, yalancı-büküm, bıçak sırtı, dişli çark, örme-sökme, yığma kutusu gibi termomekanik, hava-jeti gibi mekanik ve bunların yanı sıra bikomponent, kimyasal ile tekstüre gibi yöntemler çalışılmış olsa da günümüzde en yaygın olarak kullanılan iki yöntem yalancı-büküm ve hava-jeti ile tekstüre yöntemleridir. Polyester, poliamid, polipropilen gibi termoplastik liflerin tekstüre edilmesine yönelik yaygın literatür bulunmaktadır. Akrilik filament iplik ise fiziksel, kimyasal ve termal özellikler açısından bahsi geçen termoplastik liflere göre ayrıştığı için bu malzemenin tekstüre edilmesine yönelik özel araştırmaların gerçekleştirilmesi önem kazanmaktadır. Akrilik filament iplik, diğer sentetik ipliklere kıyasla ultraviyole ışınlarına, kimyasallara ve mikroorganizmalara karşı daha iyi bir dayanım gösterirken, yüksek ışık ve hava şartlarına karşı renk haslığı, rezilyans, boyutsal kararlılık gibi özellikleriyle de ön plana çıkmaktadır. Ayrıca akrilik kesik elyaftan üretilen ipliklere göre daha yüksek mukavemet ve kumaşa dönüştürüldükten sonra daha yüksek aşınma dayanımı ve boncuklanma özelliklerine sahip olacaktır. Akrilik filament iplik halihazırda kullanıldığı bükümlü haliyle kendisine tente, halı, dikiş ipliği gibi kullanım alanları bulabilse de tekstüre edilmemiş filament ipliklere özgü suni görüntüsü nedeniyle potansiyelinin altında bir kullanımı olduğu değerlendirilmektedir. Bu iplik için uygun tekstüre proses şartlarının belirlenerek sonraki tekstil proseslerinde işlenebilir ve kabul edilebilir fiziksel özelliklere sahip akrilik filament tekstüre iplikler elde edildiğinde çok daha yaygın bir şekilde kullanımı mümkün olacaktır. Bu çalışma kapsamında, gerçek büküm-büküm açma, yalancı-büküm, örme-sökme, sıcak hava-jeti, soğuk hava-jeti ile tekstüre yöntemleri incelenmiş, tüm yöntemlerle ilgili kritik noktalar belirlendiği gibi yalancı-büküm tekstüre ve hava-jeti ile tekstüre yöntemlerinde yürütülen deney tasarımı ve sonrasında gerçekleştirilen istatistiksel analiz ile optimum proses şartları belirlenmeye çalışılmıştır. Elde edilen sonuçlar, akrilik filament iplikten yeni ticari ürünler oluşturulmasına yardımcı olacağı gibi bu iplik için zayıf olan literatür bilgisinin genişletilmesinde ve potansiyel yeni çalışmalara temel oluşturulmasında yararlı olacaktır.
  • Öge
    Development of structural health monitoring system for fiber reinforced polymer composites
    (Lisansüstü Eğitim Enstitüsü, 2021) Shahrukh, Shahbaz ; Berkalp, Ömer Berk ; 692349 ; Tekstil Mühendisliği
    Fiber Reinforced Polymer (FRP) composites have emerged as a promising structural material for high-end applications. Their advantage of tailored properties according to specific requirements of desired applications has enabled them to achieve a preferred position above conventional metals. Glass Fiber Reinforced Polymer (GFRP) composites have gained a huge market in advanced engineering applications, among which aerospace and automotive industries are significant. The advancements in technologies have enabled the industries to commercialize large-scale composite architectures with higher productivities. Although composites have been offering reliable performance for large-scale and complex architectures, their maintenance is necessary for safety reasons and prolonging the service life with the least costs involved. The anisotropic nature of composites makes the detection of damage and failure very complicated in real-time. Therefore, various Structural Health Monitoring (SHM) techniques are being studied widely to monitor structural integrity in real-time. Focusing on this issue, piezoresistive strain sensors have been investigated in this study which has the potential to offer real-time information about structural integrity. The primary aim of this study is to sense induced strains and damages in the composite structures in real-time for which three major categories of strain sensors have been developed and analyzed. To support the simultaneous multichannel electrical signal acquisition, an Arduino microcontroller setup was developed to offer customized electrical measurements. The setup was successfully designed and implemented to record real-time electrical measurements from the embedded sensors in composite specimens. Carbon fiber based strain sensors were utilized to detect induced strains during tensile and flexural loadings by coupled electrical measurements. The experimental results showed that carbon fiber rovings were highly sensitive to low strains in composites during tensile and flexural loadings. The dual assembly of strain sensors revealed that the piezoresistive behavior of carbon fiber strain sensors is opposite for compressive strain and tensile strain during flexural loading. Temperature cycles from -10 oC to 80 oC influenced the resistance of carbon fibers up to 7.29%. Multi-Walled Carbon Nanotubes (MWCNTs) based strain sensors were developed and embedded in GFRP composites to analyze their piezoresistive behavior. Carboxy and amide functionalized MWCNTs were used to develop CNT-enabled E-Glass fiber strain sensors. FTIR spectroscopy confirmed the interactions between MWCNTs and glass fiber surfaces. The electromechanical test results indicated that MWCNT coated sensors in GFRP composites show promising piezoresistive sensing characteristics with good cyclic reproducibility that is significant for in-situ strain monitoring and damage detection. The experimental results showed that amide functionalized MWCNT sensors had higher strain sensitivity to flexural strains, whereas higher sensitivity to tensile loading was noticed with carboxy functionalized sensors. However, more linear piezoresistive behavior was found with amide functionalized sensors. A significant reproducible behavior with -8% relative resistance change was noticed as an electrical response to temperature cycles in the range of -10 oC to 80 oC. The development of carbon fiber thin films as strain sensors using a facile method was experimented. Thin films having conductive properties were developed in six different formulations with casting techniques to analyze their piezoresistive behavior for strain sensing in FRP composites. Higher concentrations of short carbon fibers encouraged higher conductivities in thin films. The electromechanical testing in a three-point bending configuration showed that the higher concentration of short carbon fibers influenced the sensitivity of sensors positively in the elastic region. Moreover, higher reproducibility during cyclic loading was also achieved with high concentrations of carbon fibers. Temperature cycles from -10 oC to 80 oC affected the resistance of the sensors with a negative temperature coefficient of resistance. Overall, the studied sensors had more sensitivity to tensile strains as compared to flexural strains. However, carbon fiber thin films showed the highest sensitivity to the induced flexural strains. Further work may improve the efficiency of sensing various types of damages using these sensors.