LEE- Mekatronik Mühendisliği-Yüksek Lisans
Bu koleksiyon için kalıcı URI
Gözat
Konu "machine learning" ile LEE- Mekatronik Mühendisliği-Yüksek Lisans'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeÇamaşır makinelerinde yapay sinir ağları ile yıkama performansı ve enerji tüketiminin modellenmesi(Lisansüstü Eğitim Enstitüsü, 2022-06-23) Aktaş, Yakup ; Altınkaynak, Atakan ; Kalafat Acer, Merve ; 518181036 ; Mekatronik MühendisliğiDünyada gelişen teknoloji ve mühendislik yetkinlikleriyle beraber endüstride bir rekabet ortamı oluşmuştur. İlgili sektör üreticileri fark yaratan ürünler otaya koymak için gelişen teknolojik adımları yakalamak ve ürünlerine değer katacak gelişmeleri takip etmek durumundadır. Özellikle tüketicinin doğrudan etkileşim halinde olduğu beyaz eşya ürünlerinde fark yaratan teknolojiler ön plana çıkmaktadır. Ancak ürünlere eklenen birçok yeni özellik beraberinde maliyetleri de doğurmaktadır. Aynı zamanda üreticiler için kaynak ve zaman yönetimi anlamında da ekstra yük getirmektedir. Bu nedenle ürünlerin ar-ge, tasarım ve üretim süreçleri ne kadar iyileştirilebilirse sektörde rekabetçi ve yenilikçi ürünler ortaya koyabilmek o kadar mümkün hale gelecektir. Üretilecek olan ürünlerin ar-ge ve tasarım aşamalarındaki test süreçlerinin iyileştirilmesi maliyet, kaynak ve zaman açısından üreticiler için olumlu katkı sağlamaktadır. Çamaşır makinaları günümüzde yaygın olarak kullanılan dayanıklı tüketim aletleridir. Su ve elektrik enerjisi ile çalıştıkları için, test süreçlerinde her bir çevrimdeki bu tüketimler ek maliyetlere ve aynı zamanda dünya kaynaklarının da tüketilmesine yol açmaktadır. Bununla birlikte zaman açısından da yeni ürün proje süreleri uzamakta ve teknolojik gelişimi yavaşlatmaktadır. Yani test süreçlerinin kısalması, hem sürdürülebilirliğe katkı yapacak, hem maliyetleridüşürecek hem de zamanın verimli kullanılmasına yol açacaktır. Tez kapsamında çamaşır makinalarının ar-ge ve tasarım süreçlerinde gerçekleştirilen test metotlarının kurulacak model yapısında incelenmesi ile çevresel sürdürülebilirliğe katkı sağlanması, üretici maliyetlerinin düşürülmesi ve zaman tasarrufu elde edilmesi amaçlanmaktadır. Çamaşır makinalarının sahip olduğu özelliklerin yanında, standartlarca belirlenmiş çeşitli sınırları da sağlıyor olması gerekmektedir. Bunlardan biri yıkama performansıdır. Çamaşır makinalarının temel özelliği olan yıkama işlemi, standartlarda belirlenmiş yöntemlerile ölçülebilmektedir. Üretilen çamaşır makinalarının da belirlenen limit değerin altına düşmeyecek etkinlikte yıkama performansına sahip olması gerekmektedir. Üreticiler ise bu sınır koşulu sağlayıp sağlamadığını test etmek için standart yıkama performansı testlerini laboratuvar oertamında gerçekleştirmektedir. Ancak farklı sınır koşullarından dolayı yıkama performansını sağlayabilmek adına birçok parametrenin optimize edilmesi gerekmektedir. Birden fazla parametrenin etki ettiği yıkama performansı hedef değerini yakalayabilmek adına yapılan bu deneme testleri ise su ve enerji tüketimlerinden dolayı beraberinde ekstra bir yük getirmektedir. Bu sebeple kurulacak model yapısı ile bu test sonuçlarının tahmin edilebilmesi hedeflenmektedir. Diğer bir yandan, standart olarak sağlanması gereken yıkama performansının belirli enerji tüketimi sınırları içerisinde gerçekleşiyor olması gerekmektedir. Üreticiler, üretilen çamaşır makinasının enerji tüketiminin, standartlarda belirlenen enerji sınıf aralıklarından hangisine denk geldiğini deklare etmek durumundadır. Doğal olarak daha düşük tüketime sahip enerji sınıfındaki ürünler son kullanıcı tarafından daha çok tercih edileceğinden yıkama performansı değerine olabilecek en düşük enerji tüketimi ile ulaşmak ana hedeftir. Bu nedenle yapılan performans testleri yerine yıkama performansını tahmin edecek model ihtiyacının yanında, optimum tasarımın yapılabilmesi için enerji tüketiminin de tahmin edilmesi gerekmektedir. Kurulacak enerji tüketimi modeli ile de enerji tüketimi değerinin test yapmadan tahmin edilebilmesi amaçlanmaktadır. Tez kapsamında kurulacak yıkama performansı ve enerji tüketimi tahmin modellerini elde edebilmek için öncelikle deneysel veriye ihtiyaç vardır. Bu amaçla laboratuvar ortamında deney istasyonları hazırlanmış ve standart yıkama performansı test sonuçları tüm analog ve dijital verileriyle birlikte toplanmıştır. Tahmin edilmek istenen yıkama performansı ve enerji tüketimi değerlerinin yanında model yapılarını girdi sağlayabilecek parametrelerin de değişimleri kaydedilmiştir. Toplanan verilerin analizi yapılarak yıkama performansı ve enerji tüketimi tahmin modelleri için ayrı ayrı girdi parametreleri seçilmiş ve çeşitli model yapıları oluşturulmuştur. Oluşturulan yapılardan en iyi performans gösteren modeller seçilmiştir. Elde edilen modeller sayseinde yıkama performansı ve enerji tüketimi için seçilen girdi parametresi değerleri verildiğinde yüksek doğrulukta sonuçlar alınmaktadır. Tezin ilk bölümünde literatürde çamaşır makinalarında gerçekleştirilen yıkama prosesine etki eden temel parametrelerden bahsedilmiştir. Ayrıca tezin ilk bölümünde çamaşır makinlarında geliştirilmiş makine öğrenmesi, yapay sinir ağı ve bulanık mantık algoritma çalışmalarından örnekler sunulmuştur. Yapılan çalışmalarda tahmin edilmesi kritik parametrelere yer verilmiş ve farklı yöntemler kıyaslanmıştır. Tezin ikinci bölümünde yıkama performansı ve enerji tüketimi modellerine veri girişi sağlamak amacıyla kurulan deney sisteminden, kullanılan ekipmanlardan ve ölçüm yöntemlerinden bahsedilmiştir. Bu bölümde ek olarak toplanan deneysel veri kümesi incelenmiştir. Verilerin makina özellikleri açısından yıkama performansı ve enerji tüketimine göre dağılımları gösterilmiştir. Tezin üçüncü bölümüden yıkama performansı modeli için girdi parametreleri seçilmiştir. Girdi parametrelerinin çıktı değerine etkileri detaylıca açıklanmıştır. Parametrelerin istatistiksel özellikleri elde edilmiş, girdi-çıktı parametreleri arasındaki lineer korelasyon ilişkileri çıkarılmıştır. Tezin bu bölümünde lineer yöntemlerin problemi çözümlemeye yetmeyeceği ve makine öğrenmesi yöntemlerinin denenmesi gerektiği yapılan lineer regresyon analizleri ile vurgulanmıştır. Bu amaçla aynı bölümde modelleme için kullanılacak yapay sinir ağları ile Levenberg-Marquardt geri yayılım algoritması açıklanmıştır. Kurulacak modelin algoritma parametreleri detayları ile verildikten sonra farklı katman ve nöron sayılarındaki yapay sinir ağı sonuçları elde edilmiş ve en iyi performansı veren modeller belrtilmiştir. Yapay sinir ağı modeli Matlab programı kullanılarak Levenberg-Marquardt geri yayılım öğrenme algoritmasının model parametre detayları değiştirilerek oluşturulmuştur. Tezin dördüncü bölümünde de yıkama performansı yapay sinir ağı modeline benzer şekilde enerji tüketimi modeli için de girdi parametreleri belirlenip lineer korelasyon ilişkileri belirtilmiştir. Lineer regresyon analizi sonuçları paylaşılmış ve enerji tüketimi modeli için de yapay sinir ağı modeli kurulmuştur. Yıkama performansı yapay sinir ağı modeli ile aynı ağ yapısı özelliklerinde modeller karşılaştırılmış ve en yüksek performansı veren model seçilmiştir Tezin beşinci bölümünde elde edilen model yapıları, ortak model arayüzü oluşturmak adına Simulink ortamına aktarılmış ve tasarım süreçlerinde kullanıma hazır hale getirilmiştir. İlgili girdi parametrelerinin değerleri verildiğinde elde edilen en iyi modellerin tahmini sonucu yıkama performansı ve enerji tüketimi değerleri elde edilebilmektedir. Tezin beşinci ve son bölümünde ise yapılan tez çalışmasının sonucuna ve gelecek çalışmalar için önerilere yer verilmiştir.
-
ÖgeDevelopment of quality prediction model and control mechanism for clinching process(Graduate School, 2024-07-04) Kazancı, Emin Abdullah ; Kocaarslan, İlhan ; 518211011 ; Mechatronics EngineeringMany mass production lines in the industry use the joining technique known as clinching. Reasons for the high demand for the clinching process are the unnecessity of additional binding agent, process speed, waterproofness, eco-friendliness, and ease of implemantation. In the clinching process, metal sheets are formed under mechanical force that is applied by punch and die tools. The tools are designed and produced specifically according to the thickness and material properties of metal sheets. Despite the fact that there are electromechanical or hydro-pneumatic powered, conventional hydraulic powered clinching stations are the most preferred as sources of mechanical force because of their investment cost, process speed, versatility and size advantages. However, hydraulic powered systems bring along some drawbacks such as a lack of precision on the quality of clinched joints, eccentricity between punch and die, power consumption and control difficulty because of the single pump that feeds multi-cylinder systems. Although there are three major quality indicators of clinched joints, the bottom thickness of the joint is the most used and critical one because it is both the simplest measurement in an production environment and the most related to quality. Nevertheless, inspection of all produced clinched joints is not feasible based on the measurements of a single operator. Therefore, a quality prediction model is developed in this study. The study is conducted with force and displacement data that is collected from 16 different clinching cylinders at a 1200 Hz sampling rate. Linear, ridge, lasso, decision tree, random forest, extreme gradient boosting, support vector machine and k-nearest neighbors machine learning models are experimented with and validated systematically. The random forest regressor is found to be the best validation scored model. Additionally, a smart decision mechanism (SDM) is developed and implemented based on force and displacement sensor data to overcome major malfunctions that cause a remarkable amount of scrap and production line stoppage. Moreover, a part-to-part feedback control mechanism is developed and implemented to control clinching quality in the optimum range. The bottom thickness of a clinched joint for 0.4 and 0.5 mm stainless metal sheet joining must be between 0.3 mm and 0.4 mm in order to be evaluated as optimum, while the range of 0.25–0.5 mm is accepted as a proper joint. The control mechanism uses force and displacement sensor data to observe system behavior, and utilizes the prediction model and periodic manual measurements to build reference thresholds. In conclusion, an application that stores sensor data, runs control algorithms and makes visualization, is developed for two clinching stations that consist of 16 hydraulic cylinders. In future, the study can be maintained to predict quality more precisely and maintenance dates with regard to the expanding data set and the advanced machine learning algorithms.