Avrasya Yer Bilimleri Enstitüsü
Bu topluluk için Kalıcı Uri
Enstitü, yerin katmanları ve birbirleri ile ilişkilerini araştırmakla birlikte, konuyla ilgili yüksek lisans ve doktora programları yürütmektedir.Enstitüde üç anabilim dalı mevcuttur. Bunlar Katı Yer, İklim Deniz ve Evrim ve Ekoloji anabilim dallarıdır. Bunlardan ilk ikisi “Jeodinamik” ve “İklim-Deniz” Lisansüstü programlarını başlatmışlardır. 2006 yılında bu iki program birleştirilerek “Yer Sistem Bilimi” programı adı altında Lisansüstü eğitim verilmeye başlanmıştır.
Gözat
Konu "Agricultural economy" ile Avrasya Yer Bilimleri Enstitüsü'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeWrf/cmaq Modelleme Sistemi İle Hava Kirliliğinden Kaynaklanan Avrupa'daki Tarımsal Zararın İncelenmesi(Eurasia Institute of Earth Sciences, 2016-05-02) Öztaner, Yaşar Burak ; Ünal, Alper ; 601131005 ; Climate and Marine Sciences ; İklim ve Deniz Bilimleri Anabilim DalıThe population of Europe, including non-EU countries located in continental Europe, is estimated to be around 740 million, which corresponds to 10% of the world's population (United Nations-UN, 2015). Wheat production in between 1996-2014 in Europe is 133.9 million tons (Mt). This corresponds to 21% of world's wheat production (FAO, 2015). In addition, because of Industrial Revolution in Europe an increasing trend in air pollution and pollutants that persists up to present day can be observed. This increase in air pollution is the cause of critical environmental impacts. Even though there are various studies in Europe about impacts of ozone on human health, not many studies exist to investigate ozone's impact on agriculture. Besides the negative impact on human health, exposure to high concentrations of ozone is a threat to food security and agricultural activities. Elevated O3 concentrations and changes in the concentrations affect plant life functions such as photosynthesis, transpiration, and gas exchanges. It has been found by many scientific studies that ground-level ozone exposure reduces photosynthesis of crops since it damages substomatals apoplast, cell membranes and walls. Decreased photosynthesis result in low growth rates in terms of volume or biomass. In Europe and United States of America (USA), various observational and experimental studies conducted on this subject. These studies resulted in different empirical ozone exposure equations for different parts of the world. Agricultural production losses can be calculated because of these equations. In Europe, AOT40 (cumulative summation of differences in high ozone concentrations over 40 ppb) is a widely used method which is a product of experimental studies conducted in Europe. However, in USA, W126 method (summation of weighted ozone concentrations in day light time by using sigmoidal distribution equation) is being widely used. Other than these two methods there are many other methods used around the world to calculate agricultural production loss due to ozone impacts. Some of these methods are daily summation of difference of threshold values (SUM-X method) or daily mean calculation (M-X method). There are several studies from different parts of the world that were conducted on the impacts of ozone on agricultural crops (i.e., wheat, soybean, rice, potato), their yield losses, and relative yield losses. In a study by USEPA, a 10% crop loss due to ozone was observed in agricultural production in USA. A similar study for the Europe found that the loss was around 5% in Europe. Tropospheric ozone as a regional and global threat to plants threatens our current and future food security. In literature, there are studies conducted on impacts of ozone on agricultural productions for different regions in the world. Even though these studies can show the local loss, they fail to perform well for regional impacts. For this reason, some scientific studies focused on quantifying the impact of ozone pollution on crops using regional or global atmospheric models. Low spatial resolution of global models affects the level of representation of results. Spatial resolution is better in regional studies compared to global ones, however, there are studies utilizing this higher resolution to calculate agricultural production losses. In a study, in India, conducted on impacts of ozone on wheat production loss using WRF/Chem regional chemical transportation model it was found that wheat production loss was 5 Mt for 2005. In a similar study, Eta-CMAQ regional chemical transport model was used to estimate the soybean loss in USA (2005), and found that amount of loss was in range of 1.7-14.2 %. Due to regional changes in ozone concentrations, working with a regional chemistry model yields better results for the calculation of agricultural production loss. In global models, there are many uncertainties due to low resolutions. In this study, WRF/CMAQ modeling system with three different ozone crop exposure indices (AOT40, W126, and M7) was used to estimate wheat production loss in Europe. Growing season was selected as May – July for wheat in Europe. European Environmental Agency (EEA) AirBase database ozone observations were used to calculate mean ozone values for growing season of years 2008 to 2012. The highest growing season average (45.6 ppb) was found in 2009. Averages for other years are as follows, 33.28 ppb for 2008, 29.29 ppb for 2010, 39.12 ppb for 2011, and 30.42 for 2012. This is the reason behind the selected study period growing season (May-July) of 2009. Country based total wheat production data for 2009 were obtained from Food and Agriculture Organizations (FAO). Spatial distribution of country based total wheat production data was performed by using gridded global wheat production map (for year 2000) from studies of Monfreda et al. (2008) and Ramankutty et al. (2008). For each grid cell countries contain a total value was found. These totals then divided by number of grid cells countries contain and grid cell ratios were calculated. These ratios were multiplied with total wheat production data of FAO 2009 and spatially distributed. This created map then remapped according to model area and resolution. In this study, modeling method is WRF / CMAQ modeling system with 30 km spatial resolution. As Meso-scale Atmosphere Circulation Model, WRF-ARW 3.6 (Weather Research and Forecast-Advanced Research WRF) was used with 35 horizontal levels, and with 191 cells in east-west and 159 cells in north-south direction. Also, 0.75 degree ECWMF Era-Interim Reanalysis data was used to prepare initial and boundary conditions of the model. For land-use, MODIS-30 20-class data was prepared. DUMANv2.0 emission model (developed by Istanbul Technical University, Eurasia Institute of Earth Science) was used for emission modeling. Inputs of emission model were anthropogenic, biogenic, and fire emissions. Anthropogenic emissions are created from TNO-2009 database by using DUMANv2.0 with CB05-AERO5 chemical mechanism. MEGAN v2.10 biogenic emission model was used for biogenic emissions. Fire emissions were calculated by data obtained from GFASv1.0 satellite dataset. CMAQv4.7.1 model with CB05-AERO5 chemical mechanism was used for chemical transportation modeling. WRF outputs were converted into M3MODEL structure by using MCIP (Meteorology-Chemistry Interface Processor). ICON (Initial Cond.) and BCON (Boundary Cond.) were used to create initial and boundary conditions. Inputs for these modules were obtained from ECMWF – MACC 3-hour model output with spatial resolution of 80-100 km. Open sky photolysis data were prepared with JPROC (Photolysis Rate Processor). Ozone variable was obtained from CMAQv4.7.1 model and applied to three ozone exposure indices. Gridded map of wheat production map of 2009 were multiplied with these values, thus calculated the wheat loss in each cell. Total economic loss was calculated by multiplication of calculated production loss and FAO 2009 country based wheat production price index. In order to calculate economic loss between countries, each country's 2009 GDP was normalized. The highest wheat loss was found in Russia (7.14 Mt - 11.6% and 17.3 Mt – 28%) by AOT40 and M7 methods while W126 method found the highest loss in Italy (1.54 Mt-24%). Following countries generally have higher wheat loss in every method, Turkey (6.8 Mt), France (3.47 Mt), Germany (2.45 Mt), and Egypt (5.54 Mt). According to the regional results the highest loss was found in South (8.3 Mt – 61%) and East (12.8 Mt – 37%) Europe, the lowest loss was found in Northern European countries (2.2%- 0.65Mt). Greatest losses were found in M7 method while W126 method has the lowest loss values. This provides a range (min-max) for ozone caused wheat loss in Europe. The highest economic loss was in Russia with 2.23 billion American Dollar (USD). Turkey ($2.24 bn), Italy ($1.64 bn), and Egypt ($ 1.59 bn) were other countries with high economic loss, right after Russia. Eastern Europe has the highest regional economic losses with ($1.6 bn) USD and Southern Europe ($2.8 bn). The lowest economic loss was in Northern Europe ($0.01 bn). Reason behind the high wheat loss values in Southern and Eastern Europe region is due to ozone precursor transport from Middle – Western European region via southerly – easterly meteorological systems. This causes higher ozone concentrations in Southern and Eastern Europe and affect wheat loss. Emission regulations should be more focused and applied in Middle – Western European countries.