Bilgisayar Bilimleri Lisansüstü Programı - Yüksek Lisans
Bu koleksiyon için kalıcı URI
Gözat
Konu "Bioinformatics" ile Bilgisayar Bilimleri Lisansüstü Programı - Yüksek Lisans'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeHizalama Ve Sıkıştırma Tabanlı Protein Fonksiyon Öngörüsünde İkinciliyapının Katkısı(Bilişim Enstitüsü, ) Filiz, Aslı ; Çataltepe, Zehra ; 387982 ; Bilgisayar Bilimleri ; Computer ScienceProtein fonksiyon öngörüsü, biyoinformatikteki en önemli ve zor problemlerden biridir. Amino asit dizisine ek olarak öngörülmüş veya gerçek ikincil yapı, protein fonksiyon öngörüsü için sıklıkla kullanılmıştır. Fonksiyon öngörüsü için genellikle amino asit ve ikincil yapı dizileri kullanılarak hesaplanan hizalama puanları kullanılır. En çok kullanılan hizalama algoritmalarından biri, uzak proteinlerin benzerliklerini saptamak için çok uygun bir yerel hizalama algoritması olan Smith-Waterman hizalamasıdır. Normalize sıkıştırma uzaklığı (NCD), proteinlerde olduğu kadar müzik, metin, resim, istenmeyen e-posta filtreleme ve hatta fizik gibi alanlarda da kullanılabilen bir diğer uzaklık ölçütüdür. Smith-Waterman hizalama puanları ve NCD fonksiyon öngörüsünde kullanılmış ve NCD'nin tek başına hizalamadan daha kötü performans gösterdiğini, ancak NCD ve hizalama puanlarının birleşiminin her iki ölçütten de daha başarılı olduğu gösterilmiştir. Bu çalışmada, her ikisi de amino asit dizisine ek olarak ikincil yapıyı da içeren Smith-Waterman ve NCD ölçütlerinin birleşiminden yeni bir ölçüt elde edilerek fonksiyon öngörüsünde ikincil yapıdan da faydalanılmıştır. Deneyler sonucunda, ikincil yapının katkısının hem Smith-Waterman hem de NCD ile yapılan öngörülerde iyileşme sağladığı görülmüştür. Birleştirilmiş ölçüt ile yapılan sınıflandırmanın performansı yalnızca NCD puanları ile yapılan sınıflandırmadan daha başarılı olurken, yalnızca Smith-Waterman puanları ile yapılan sınıflandırma her ikisinden daha başarılı olmuştur. Smith-Waterman hizalama puanları ile yapılan sınıflandırma aynı zamanda, hem bir amino asit için hem birincil hem de ikincil yapıyı belirten bileşik bir gösterim üzerinden hesaplanan NCD puanları ile yapılan sınıflandırmadan, hem de bütün Smith-Waterman ve NCD puanlarını içeren nitelik vektörleri ile yapılan sınıflandırmadan daha başarılı sonuç vermiştir.
-
ÖgeSaklı Markov Modelleri Kullanarak Protein Fonksiyon Öngörüsü(Bilişim Enstitüsü, ) Kömürlü, Caner ; Çataltepe, Zehra ; 371550 ; Bilgisayar Bilimleri ; Computer ScienceSaklı Markov modellerininin biyoinformatik alanında kullanılmaya başlanması ile üzerine düşülen konu HMM profilleri olmuştur. Saklı Markov modellerinden önce çoklu hizalama yöntemleri ile üretilen profiller, bu modellerin kullanılması ile daha başarılı ve yüksek doğrulukla üretilmeye başladı. Uzak homoloji kavramının bu modellerle çalışmalara dahil edilmesi bu sayede gerçekleşti. Uzak homoloji üzerine geliştirilen araçlar ve bu araçların kullandığı diğer araçların başında, HHsearch (HMM HMM search), PRC (Profile Comparer), SAM (Sequence Alignment Modelling), HMMER gelir. Bu çalışmada HMMER, profil-dizi kıyaslaması yoluyla benzerlik matrisi üretiminde, HHsearch profil-profil kıyaslaması yoluyla benzerlik matrisi üretiminde, PRC yine profil-profil kıyaslaması yoluyla benzerlik matrisi üretiminde kullanıldı. Bu yöntemlerde gerekli yerlerde PSI-BLAST, ClustalW ve Kalign, hizalama ve demetleme yöntemleri için kullanıldı. Veri olarak Protein Data Bank veritabanınıdan Gene Ontology'ye bağlı olarak oluşturulan 5 sınıflı protein veritabanı, yine aynı veri kümesinin zenginleştirilmiş sürümü ve NR veri kümesi kullanıldı. Benzerlik matrislerinin üretiminin neticesinde elde edilen veri, örüntü tanıma tekniklerinde kullanıldı. 5 sınıflı veri kümesi için dizi-profil ve profil-profil kıyaslamasının katar hizlama yöntemlerinden daha kötü sonuç verdiği bulundu. İkincil yapının HMM'de hesaba katılmasının fonksiyon öngörüsünde faydalı olduğu görüldü. NR veri kümesi ile zenginleştirilmiş veri kümesinin profil üretiminde faydalı olduğu görüldü.