Bilgisayar Bilimleri Lisansüstü Programı - Yüksek Lisans
Bu koleksiyon için kalıcı URI
Gözat
Konu "Bilim ve Teknoloji" ile Bilgisayar Bilimleri Lisansüstü Programı - Yüksek Lisans'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeAraç Renk Tanıma Sistemi(Bilişim Enstitüsü, ) Dule, Erida ; Gökmen, Muhittin ; 371524 ; Bilgisayar Bilimleri ; Computer ScienceSon yıllarda, teknolojinin gelişmesiyle uzaktan algılama ve tanıma sistemleri hayatımızın her alanına girmeye başladı. Çoklu ortamların giderek yaygınlaşması ve ucuzlamasıyla birlikte renk tanıma ile ilgili çalışmalar önem kazanmıştır. Çünkü, renk, resim ve video gibi görsel öğelerde nesneleri ayırt etmek için önemli bir özelliktir. Ancak, renk ışık kaynağının açısına ve şiddetine, gölgeye, hava koşullarına ve kameranın bakış açısına göre değiştiği için görüntüleri gösteren sabit bir eleman değildir. Bu nedenle dış ortam görüntülerinde yansıyan yüzeyli nesnelerin renklerinin tanınması zor ve ilgi çekici bir problemdir. Bu çalışmada dış ortamda ve hareket halindeki araçların renklerini tanıyan gerçek zamanlı bir sistem geliştirilmeye çalışılmıştır. Sistemi gerçekleştirmek için farklı renk tanıma bölgeleri, farklı öznitelikler ve farklı sınıflandırma yöntemleri kullanılmış veya geliştirilmiş, aralarındaki en iyi kombinasyon bulunmaya çalışılmıştır. Sistem yedi farklı rengi tanımak için tasarlanmıştır: beyaz, gri, kırmızı, mavi, sarı, siyah ve yeşil. Araç görüntülerinden meydana gelen veri tabanının oluşturulması için otoban kenarına kameralı bir bilgisayar düzeneği kurulmuş ve yoldan geçen hareket halindeki araçların görüntüleri çekilmiştir. Bu video görüntülerinin her bir karesi plaka tanıma sistemi kullanılarak elekten geçirilmekte ve plakalı araçların olduğu görüntüler seçilmektedir. Böylece görüntülerdeki cismin bir araç olduğu %99 oranında saptanmış olmaktadır. Renk tanıma sistemi bu işlemden sonra devreye girmektedir. İlk olarak, aynı araca ait peş peşe görüntülerden araç renk tanıma (ART) sisteminde kullanılacak olan görüntüye ?Uygun Kare Seçimi? algoritması ile karar verilmektedir. Uygun kare seçimi yapıldıktan sonra, seçilen görüntüdeki aracın renginin belirlenmesi için uygun bölgenin (ROI : Region of Interest) seçilmesi gerekmektedir. ROI seçimi için üç yöntem denemiş, iki yöntemde karar kılınmıştır: kaput parçası ROI ve yarım araç ROI. Kaput parçası ROI betik (piksel) seçerek oluşturulan öznitelik vektörleri için, yarım araç ROI ise histogram tabanlı öznitelik vektörlerinin oluşturulması için daha uygun yöntemlerdir. Bu çalışmada üç farklı öznitelik vektörü oluşturma yöntemi geliştirilmiştir. Bunlar histogram tabanlı öznitelik vektörü, ekli histogram tabanlı öznitelik vektörü ve piksel tabanlı öznitelik vektörü oluşturma yöntemleridir. Öznitelik vektörleri, renklerin ifade edildiği farklı renk uzayı bileşenlerinden oluşturulmaktadırlar. Piksel tabanlı yöntemde her bir öznitelik, rengin sayısal ortamda ifade edildiği bileşenleri cinsinden (RGB) ve bu bileşenlerin normalize rgb, HSV, L*a*b, L-color gibi farklı renk uzaylarına çevrilmesiyle elde edilen sayısal değerini ifade etmektedir. Histogram tabanlı öznitelik oluşturma tekniğinde ise, renk uzayı bileşenlerinden bir ve iki boyutlu normalize histogramlar oluşturulmaktadır. Öznitelik vektörleri ise bir yada birden çok histogramın art arda sıralanması ile elde edilmektedirler. Araç renk tanıma sisteminde son olarak öznitelik vektörlerinin sınıflandırması algoritması yer almaktadır. Bu aşamada Şablon Eşleştirme (TM), K En Yakın Koşu (K-NN), Yapay Sinir Ağları (ANN) ve Destek Vektör Makineleri (SVM) sınıflandırma modelleri araştırılmış, farklı koşullarda yapılan testler sonucunda en iyi performansı veren sınıflandırma yöntemi seçilmiştir. Sınıflandırma aşamasında bir ileri adım olarak Karar Ağacı oluşturulmuştur. Karar ağacı oluşturulurken iki yaklaşım izlenmiştir: Biri tahmini yaklaşım ile ağaç oluşturma diğeri ise hesaplamalı yaklaşım ile eğitim kümesi kullanılarak Iterative Dichotomiser 3 (ID3) algoritması yardımıyla karar ağacının oluşturulması. Tahmini karar ağacı yönteminde ağacı oluştururken izlenen yaklaşım, renkleri en farklı özelliklerine göre ayırmak olarak söylenebilir. Ağacın kökünden başlanarak her karar düğümünde her sınıflandırma yönteminin, her bir öznitelik vektörü oluşturma yöntemi ve her bir öznitelik vektörü için sınıflandırma oraları hesaplandı. Testler sonucunda yukarıda sıralanan tüm yöntemlerin birbirleriyle nasıl çalıştıkları ve performansları elde edilmiş oldu. Yapılan testler sonucunda piksel tabanlı öznitelik vektörleri kullanılarak elde edilen en yüksek başarı oranı ANN sınıflandırıcısı ve ?Rn Gn H S L b I1 I2 L1 L3 ?1? öznitelik vektörü ile %82.1 olarak bulunmuştur. Histogram tabanlı öznitelik vektörlerinin sınıflandırılmalarıyla yapılan testlerde de yine ANN modeli diğer sınıflandırıcılardan daha iyi performans sağlamış ve ?RnGn SH Gray1 L-b L1-L2 L1-L3? histogram öznitelik vektörü yarım araç ROI'de %83.89 başarı oranını yakalamıştır. Oluşturulan histogramların normalize edilmeleri ve bin sayısındaki değişiklik renk tanıma performansını önemli ölçüde arttırdığı, öznitelik vektörünün birim vektör haline getirilmesinin ise renk tanıma performansını değiştirmediği gözlenmiştir. Tahmini karar ağacının oluşturulmasıyla yapılan demeler sonucunda öznitelik vektörlerinin türüne göre oluşturulan üç farklı karar ağaçlarının başarı oranları sırasıyla histogram ağacı (histogram öznitelik vektörlerin sınıflandırılması), ekli histogram ağacı ve orta değer ağacının (piksel öznitelik vektörlerinin sınıflandırılması) performansları olarak sıralanmaktadır. Karar ağaçlarının her düğümünde en iyi renk tanıma sonucunun veren farklı öznitelik vektörü ve sınıflandırma modeli çiftleri elde edilmiş, histogram ağacında kök düğümünde R?G?B (renkli) ve R=G=B (renksiz) olarak ayrıştırılan örnekleri en iyi ayıran öznitelik vektörü ve sınıflandırıcı çifti ?RnGn SV Gray1 Gray2 a-b L1-L2 L1-L3? : TM iken, R?G?B düğümünde örnekleri kırmızı, sarı ve mavi-yeşil renk sınıflarına en iyi ayıran öznitelik ve sınıflandırıcı çifti ise ?RnGn SH Gray2 a-b L-a L1-L3? ve ANN modelidir. Histogram tahmini ağacı ile sınıflandırma yapılırsa sistemin toplam başarısı %87,828 olarak elde edilmektedir. Farklı sınıflandırma modeli ve öznitelik vektörleri ile oluşturulan tahmin ağaç sınıflandırma yöntemi daha yüksek başarı oranları vermesine rağmen, gerçek zamanlı bir sistemde oluşan zaman kısıtı nedeniyle tercih edilmeyebilir. Bu durumda histogram tabanlı öznitelik vektörü ?RnGn SH Gray1 L-b L1-L2 L1-L3? , yarım araç ROI veri kümesi kullanılarak ANN sınıflandırıcısı araçların renk tanıma işlemi için seçilmelidir.