Bilgisayar Bilimleri Lisansüstü Programı - Yüksek Lisans
Bu koleksiyon için kalıcı URI
Gözat
Konu "Artificial intelligence" ile Bilgisayar Bilimleri Lisansüstü Programı - Yüksek Lisans'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeGsm Şebekelerinde İstatistiksel Öğrenme Yöntemleri İle Aksaklık Yönetimi(Bilişim Enstitüsü, ) Sarkan, Mehmet Onur ; Çataltepe, Zehra ; 371506 ; Bilgisayar Bilimleri ; Computer ScienceBu çalışmada, GSM şebekeleri aksaklık yönetimi sistemlerine gelen alarmlar için istatistiksel öğrenme yöntemleri ile otomatik filtre kuralları üretimi için algoritmalar geliştirilip, Türkiye'nin en büyük GSM şebeke işletmeci firmasının alarm veri tabanı üzerinde deneysel testleri yapılmıştır. Çalışma iki farklı ihtiyaca odaklanmıştır: Geçici alarmların filtrelenmesi ve ilintili alarmların filtrelenmesi. Geçici alarm filtrelerinin üretiminde dağılımdan bağımsız olasılık kestirimi yöntemlerinden Histogram Analizi ve Parzen Penceresi Analizi yöntemlerinden faydalanılmıştır. Alarm tarihçesi incelenerek her bir alarm tipi için birikimli alarm yaşam süresi histogramları ve yoğunluk fonksiyonları üretilmiştir. Histogramlar ve yoğunluk fonksiyonları incelenerek geçici alarm tipleri ve bu alarm tipleri için uygun alarm bekletme filtreleri tahmin edilmeye çalışılmıştır. Literatürde bu konuda daha önceden gerçekleştirilmiş bir çalışma olmadığı için geçici alarm filtrelerinin üretimi için önerilen iki yöntem türünün ilk örnekleri durumundadır. Histogram Analizi ve Parzen Penceresi Analizi yöntemlerinin geçici alarm filtreleri üretimi konusundaki başarı performansları karşılaştırmalı olarak incelenmiştir. Parzen Penceresi Analizi içindeki çekirdek fonksiyonun yumuşatma etkisi sayesinde incelenen alarm örnek sayısının düşük durumlarda daha başarılı iken, alarm örnek sayısının yüksek olduğu durumlarda Histogram Analizi daha başarılı sonuçlar sergilemiştir. İlintili alarmları filtrelemek amacıyla kullanılan filtreleri üretebilmek için alarm tipleri arasındaki ihtimalsel ilişkilerden faydalanılmıştır. Alarm tarihçesindeki alarmlar kayan zaman penceresi yöntemi ile incelenerek eş kaynaktan yakın zamanlarda gelen alarm tipi gruplarının beraber gözlemlenme frekansları hesaplanmıştır. Hesaplanan gözlemlenme frekansları kullanılarak Pazar Sepet Analizi tekniklerinde kullanılan en yaygın altı benzerlik ölçütü hesaplanmış ve hesaplanan benzerlik ölçütleri ile alarm filtrelerinde kullanılacak ilintili alarm tiplerinin öğrenilmesi konusunda deneysel çalışmalar yapılmıştır. Kullanılan benzerlik ölçütleri Etki, Maksimum Güven, Minimum Güven, Tutarlılık, Cosine ve Kulczynski benzerlikleridir. İlintili alarm filtreleri üretilmesi konusunda önerilen altı benzerlik ölçütünün de başarılı sonuçlar verdiği gözlemlenmiştir. Benzerlik ölçütlerini beraber kullanarak daha başarılı sonuçlar elde etmek için S Biçimli Sınıflandırma yöntemi kullanılmış ve benzerlik ölçütlerinin tek başlarına sağlayabilecekleri sonuçlardan daha başarılı sonuçlar elde edilmiştir. Bu çalışmanın sonunda alarm ilintilendirme kurallarının öğrenilmesi amacıyla farklı benzerlik ölçümlerinin gücünü birleştirdiği ve benzerlik eşiklerinin de öğrenilmesini sağladığı için S Biçimli Sınıflandırma en başarılı yöntem olarak tavsiye edilmiştir.