LEE- Kimya Mühendisliği-Doktora
Bu koleksiyon için kalıcı URI
Gözat
Sustainable Development Goal "Goal 3: Good Health and Well-being" ile LEE- Kimya Mühendisliği-Doktora'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
Öge5-fluorourasil için polimer/biyoseramik ve grafen oksit içerikli ilaç taşıyıcı malzeme üretimi ve kinetik çalışmaları(Lisansüstü Eğitim Enstitüsü, 2023-05-04) Kahraman, Ebru ; Saygılı Nasün, Gülhayat ; 506162003 ; Kimya Mühendisliğiİnsan yaşamı için ciddi bir tehdit oluşturan kanser, dünya çapında önde gelen ölüm nedenlerinden biri olmaya devam etmektedir. Dünya Sağlık Örgütü (WHO) tarafından kanserin 183 ülkenin 112'sinde 70 yaş öncesi için birinci veya ikinci ana ölüm faktörü olduğu tahmin edilmektedir. Kanser tedavisi sürecinde karşılaşılan en önemli zorluklardan birisi, uygulanan yüksek toksisiteye sahip ilaçların vücut içerisinde ani ve kontrolsüz salımının, kanser hücreleri dışındaki sağlıklı dokuları da etkileyerek yorgunluk, ateş, saç dökülmesi, deri döküntüsü ve mide bulantısı gibi istenmeyen yan etkilere yol açabilmesidir. Bununla birlikte, biyolojik ortamla ilaç arasında meydana gelen etkileşimler, aktivite ve terapötik etki kaybına neden olarak tedavinin etkinliğini azaltabilmektedir. Bu nedenle, ilaçları uygun terapötik seviyede tutarak yan etkileri azaltmak ve dış etkenlerden koruyarak tedavinin etkinliğini arttırmak amacı ile tasarlanan ilaç taşıyıcı sistem çalışmaları önem taşımaktadır. 5-Fluorourasil (5-FU) ilacı, günümüzde kolon kanseri başta olmak üzere, rektum, göğüs, yumurtalık, pankreas, mide, beyin ve cilt kanseri gibi pek çok kanser türünün tedavisinde yaygın olarak kullanılan bir anti kanser ajanıdır. Bu ilaç, C(Karbon)-5 pozisyonunda hidrojen atomu yerine flor atomu bulunan bir urasil primidini analoğu türüdür. Anti kanser etkinliği oldukça üstün olmasına rağmen, kan plazmasında yarılanma süresi oldukça kısa olan (8-20 dakika) ve kanserli hücreler tarafından seçiciliği olmayan 5-FU ilacı sağlıklı hücreleri de etkileyerek istenmeyen yan etkilere ve tedavi veriminin düşmesine sebep olabilmektedir. Bununla birlikte, düşük molekül ağırlığı ve hidrofilik karakteri, 5-FU ilacının ilaç taşıyıcı sistemlere yüklenme kapasitesinin düşük olmasına neden olmakta ve kontrollü bir salımın sağlanmasına engel oluşturmaktadır. Bu nedenlerden dolayı, 5-FU'nun vücut içerisinde dolaşım süresini arttırabilecek ilaç taşıyıcı malzemelerin geliştirilmesi önem taşımaktadır. Grafen oksit (GO), grafenin oksidasyonu ile elde edilen ve oksijen içeren fonksiyonel gruplara sahip iki boyutlu bir grafen türevidir. Grafene benzer şekilde katmanlı bir yapıya sahip olan grafen oksit; epoksi, hidroksil, karbonil ve karboksilik gruplar gibi oksijen içerikli fonksiyonel gruplar bulundurmaktadır. Bu grupların varlığı, grafen oksite hidrofilik bir karakter kazandırmakta ve biyolojik ortamda çözünürlüğünü arttırarak biyouyumluğunu iyileştirmektedir. Yüksek spesifik yüzey alanı ile birlikte - etkileşimi ve hidrojen bağı oluşumuyla ilaç molekülleri ile etkileşeme geçebilme kapasitesi, grafen oksitin ilaç yükleme ve salım çalışmalarında tercih edilen bir malzeme olarak ortaya çıkmasına neden olmuştur. Bununla birlikte, grafen oksitin vücut içerisinde yalnız başına uygulanması durumunda hücre canlılığında düşüşe sebep olabileceği raporlanmış olup, biyouyumluluğunu iyileştirmek ve mümkün olabilecek toksik etkileri azaltmak için farklı biyomalzemeler ile birlikte fonksiyonelleştirilerek kullanımı tercih edilmektedir. Hidroksiapatit (HAp, Ca10(PO4)6(OH)2), insan vücudu içerisinde diş ve kemik yapısında bulunan, biyoseramik yapılı kalsiyum fosfat bir malzemedir. Biyoaktif, biyouyumlu, yavaş bozunan, osteokondüktif ve osteoindüktif yapısı nedeni ile diş hekimliği, kemik doku mühendisliği alanları başta olmak üzere, ilaç taşıyıcı sistemler ve hücre görüntüleme gibi biyomedikal alanlarda yaygın olarak kullanılmaktadır. Nanoboyutlu hidroksiapatit parçacıklarının farklı kanser hücreleri üzerinde büyümeyi önleyici etki gösterebilmesi nedeni ile, hidroksiapatit içeren kompozit malzemeler kanser ilaçları için geliştirilen ilaç taşıyıcı sistemlerde tercih edilebilmektedir. Bununla birlikte, sert ve kırılgan bir yapıya sebep olmasından kaynaklanan mekanik dezavantajları, hidroksiapatitin tek başına klinik uygulamalarda kullanımını kısıtlayabilmektedir. Ek olarak, yalnızca hidroksiapatitin taşıyıcı malzeme olarak kullanıldığı ilaç salım çalışmalarında yüksek ilk ani salım oranları görülmüştür. Bu nedenlerle, mekanik özellikleri ve kontrollü salımı iyileştirebilecek çeşitli malzemelerin katkısı ile kompozit halinde kullanımı tercih edilmektedir. Jelatin (GEL), kollajenin kısmi hidrolizi ile elde edilen doğal bir polimerdir. Asidik veya bazik prosesler ile elde edilme şekline göre sırası ile A ve B tipi olarak sınıflandırılmakta olup; hayvan derisi, kemik, kıkırdak ve bağ dokusundan elde edilebilmektedir. Düşük immünojenikliği, toksik olmaması, biyouyumluluğu, biyolojik bozunabilirliği ve düşük maliyeti nedeniyle, biyomedikal alanda yaygın olarak kullanılan doğal polimerlerden biri olarak ortaya çıkmıştır. Poliüretan (PU), termoplastik ve termoset polimer sınıfında yer alan, üretimi ve kullanım alanı açısından pek çok çeşidi bulunan bir polimerdir. Yapısal olarak yumuşak parça ve sert parça olmak üzere iki farklı şekilde sınıflandırılan bloklardan oluşan poliüretanlar, moleküler düzeydeki bu parçalı yapıları nedeni ile elastiklik, aşınma dayanımı, kimyasal stabilite ve işlenebilirlik gibi avantajlı özellikler barınıdırmaktadır. Esneklik ve mekanik dayanımın birlikte sağlanabilmesi, poliüretanların medikal alanda kullanımı avantajlı bir malzeme olarak öne çıkmasına neden olmuştur. Bununla birlikte, biyouyumlu ve pH değişimine duyarlı özellik göstermeleri nedeni ile, kontrollü ilaç salım sistemi çalışmalarında kullanımı tercih edilen malzemeler arasında yer almaktadırlar. Yapılan çalışmanın amacı; 5-FU kanser ilacının in vitro ortamda kontrollü salımını sağlayabilecek polimer/biyoseramik ve grafen oksit içerikli ilaç taşıyıcı malzemelerin geliştirilmesi, bu malzemelerin ilaç yükleme ve salım performanslarının araştırılması, deneysel tasarım ve kinetik modelleme çalışmaları ile optimizasyonun yapılmasıdır. Polimer malzemeler olarak jelatin ve poliüretan seçilirken, biyoseramik malzeme olarak hidroksiapatit tercih edilmiştir. İlk olarak, değişen jelatin konsantrasyonları içeren grafen oksit/jelatin (GO/GEL) kompozitleri üretilmiş ve bu kompozitlere adsorpsiyon yolu ile 5-FU ilacı yüklenmiştir. Deneysel tasarım çalışmaları sonucunda, düşük jelatin konsantrasyonu ve pH 8 değerinde 5-FU adsorpsiyonun maksimum olduğu görülmüştür. Adsorpsiyon izotermi çalışmaları sonucunda, 5-FU adsorpsiyonu için en uygun modelin Freundlich modeli olduğu görülmüştür. In vitro salım çalışmaları sonucunda, düşük jelatin konsantrasyonlarında birinci derece kinetik modele ve yüksek jelatin konsantrasyonlarında Higuchi kinetik modeline uygunluk görülmüştür. MCF-7 göğüs kanseri hücre hattına karşılık yapılan MTT testinde 5-FU yüklü GO/GEL kompoziti %22.8'lik bir hücre canlılığı göstermiş, 5-FU ilacının salımını ve etkisini doğrulamıştır. L-929 fibroblast hücre hattına karşılık yapılan MTT testi sonucu,15 μg/ml 5-FU yüklü GO/GEL konsantrasyonlarına kadar %80 hücre canlılığı elde edilmiş ve kompozitlerin biyouyumluluğu doğrulanmıştır. İkinci aşamada, değişen grafen oksit (GO) miktarları içeren grafen oksit/hidroksiapatit (GO/HAp) kompozitleri üretilmiş ve adsorpsiyon yolu ile 5-FU ilacı yüklenmiştir. Deneysel tasarım çalışmaları sonucunda, düşük pH (pH 2) ve düşük başlangıç 5-FU konsantrasyonlarında 5-FU adsorpsiyonu oranının maksimum olduğu görülürken, grafen oksitin hafif bir artışa sebep olduğu görülmüştür. 5-FU adsorpsiyonu için en uygun modelin Freundlich modeli olduğu görülmüş ve maksimum adsorpsiyon kapasitesi (Qm) pH 2.0 koşullarında 36.9 mg/g olarak hesaplanmıştır. In vitro salım çalışmalarında, pH 7.4 koşullarında tüm GO oranlarında salımın sıfır derece kinetik modele uygunluk görülürken, düşük pH değerlerinde ise Higuchi kinetik modele uyum görülmüştür. Üçüncü aşamada, GO/HAp kompozitlerinin 5-FU ilacı için adsorpsiyon yüzdesini iyileştirmek amacı ile, aminlenmiş grafen oksit üretimi yapılmıştır. Aminlenmiş grafen oksit/hidroksiapatit (GO-NH2/HAp) kompoziti sentezlenmiştir ve adsorpsiyon yolu ile 5-FU ilacı yüklenmiştir. GO/HAp kompoziti ile benzer şekilde, GO-NH2/HAp için yüksek GO-NH2, düşük pH ( pH 2) ve düşük başlangıç 5-FU konsantrasyonlarında en yüksek 5-FU adsorpsiyon oranı görülmüştür. Grafen oksitin aminlenmesi işlemi sonrası maksimum adsorplanan ilaç oranında %9.7'lik bir artış belirlenmiştir. 5-FU adsorpsiyonu için en uygun modelin Freundlich modeli olduğu görülmüş ve maksimum adsorpsiyon kapasitesi (Qm) pH 2.0 koşullarında 21.2 mg/g olarak hesaplanmıştır. In vitro salım çalışmalarında, tüm pH koşullarında 5-FU salımı sıfır derece kinetik modele uygunluk göstermiştir. Son aşamada, grafen oksit/poliüretan (GO/PU) kompozit film üretimi yapılmıştır. Poliüretan üretimi aşamasında, biyouyumlu ve ekonomik bir alternatif olan ayçiçek yağı ve hint yağı hidroksil kaynağı olarak kullanılmıştır. 5-FU yükleme işlemi, üretimi aşamasında 5-FU ilacının enkapsülasyonu ile gerçekleştirilmiştir. Deneysel tasarım çalışmaları sonucunda, 5-FU'nun GO/PU kompoziti içerisinden salım yüzdesinin, yüksek pH (pH 10), yüksek GO miktarı ve düşük başlangıç 5-FU konsantrasyonlarında arttığı görülmüştür. Kompozitlerde pH'a duyarlı ilaç salımı gerçekleştiği görülmekle birlikte, yüksek GO içeren kompozit için tüm pH koşullarında, Higuchi kinetik modeline uygunluk sağlanmıştır. Azalan GO miktarlarında ise, salım profilinin sıfır derece kinetik modele uyum gösterdiği belirlenmiştir. Bu tezin bulguları, sentezlenen GO/GEL, GO/HAP, GO-NH2/HAp ve GO/PU malzemelerinin 5-FU kanser ilacı için kontrollü salımı sağlayabilecek biyoyumlu ve ekonomik ilaç taşıyıcı malzemeler olarak potansiyele sahip olduğunu göstermiştir.
-
ÖgeBiopolyester / natural polymer blends for biomedical applications(Graduate School, 2022-05-22) Turan, Cansu Ülker ; Güvenilir, Yüksel ; 506152001 ; Chemical EngineeringIn this thesis, it is aimed to fabricate an antibiotic delivery system with optimal release kinetics that will overcome this problem. In recent years, fabrication of biocompatible electrospun nanofibers for drug delivery applications is the subject of increased interest, since they mimic the extracellular matrix, provide high surface area, and controlled drug release. In the present study, natural polymers (gelatin or both gelatin and chitosan) were blended with enzymatically synthesized biopolyester, poly(ω-pentadecalactone-co-ε-caprolactone) copolymer (PDL-CL), in order to obtain a synergetic effect. By the use of synthetic and natural polymers together, it was aimed to combine well-defined degradation and mechanical properties of a synthetic polymer with biocompatibility, cell adhesivity, and ability of site-specific delivery due to their functional groups of natural polymers. In this way, PDL-CL/gelatin and PDL-CL/gelatin/chitosan nanofibrous membranes were fabricated for controlled delivery of tetracycline hydrochloride (TCH) which is a commonly preferred antibiotic for treatment of skin infections resulted from a cut, burn or surgical operation. PDL-CL copolymer was synthesized by the catalysis of a home-made immobilized enzyme, Candida antarctica lipase B (CALB) immobilized onto rice husk ashes (RHA) via physical adsorption. Lipase-catalyzed copolymerization studies are limited and there is an increasing interest to improve material features by this way. Moreover, utilization of an enzymatically synthesized polymer rather than a polymer synthesized by organometallic catalysts in a formulation that will be used for a biomedical application may be advantageous, since the resulting product will be metal-free. Electrospinning of an enzymatically synthesized polymer is a challenging issue due to their low molecular weights, therefore studies that cover fabrication of electrospun nanofibrous drug delivery systems using an enzymatically synthesized polymer are limited in literature.
-
ÖgeControlled delivery of chalcone via biopolyester nanohybrid(Graduate School, 2022-11-17) Kaptan, Yasemin ; Güvenilir, Yüksel F ; 506162010 ; Chemical EngineeringIn recent years, biodegradable, biodegradable polymers have received great attention especially in medical applications and have begun to replace traditional petroleum-based synthetic polymers. Durable polymeric materials with superior physical, mechanical and chemical properties are highly demanded for medical applications. It is crucial that these materials can survive and perform in the harsh conditions of the human body, such as very low or very high pH environments and mechanical stress. One approach to manufacturing such advanced medical devices is the use of hybrid polymeric materials. In simple terms, a hybrid polymer is material consisting of two compartments, one of which is a natural or synthetic polymer, interacting with each other at the molecular level. The formation of an organic/inorganic hybrid system allows us to take advantage of the advantageous properties of each component or to create enhanced properties, sometimes synergistically. Especially in drug delivery and controlled release applications, several inorganic materials such as iron oxide nanoparticles, gold nanoparticles, silver nanoparticles, mesoporous silica and various types of clay are widely used either individually or in combination with polymers. These inorganic materials are preferred because of their small particle sizes and improved optical, electrical and mechanical properties. Despite the superior properties of inorganic materials, the use of such inorganic particles as drug carriers has some drawbacks. The main disadvantage is that they require surface modifications to ensure stability and good dispersion. Generally, these inorganic particles are used in drug delivery applications by coating or grafting with biodegradable and biocompatible polymers or forming composites. This approach also increases the biocompatibility of particles, which is one of the key features in the development of successful drug delivery system. These polymers can be synthetic or natural, and the most commonly used polymers in organic/inorganic hybrid systems for medical applications are polycaprolactone, polyvinyl alcohol, poly(d,l-lactide-co-glycolide), polyethylene glycol. Organic/inorganic hybrid systems developed with a polymer and inorganic particles can be classified under two main groups depending on the interactions between the two components. In Class 1 hybrid systems, inorganic particles are trapped or encapsulated in the polymer matrix by weak intermolecular forces such as Van der Waals, electrostatic interactions, and hydrogen bonding. Class 2 organic/inorganic hybrid system is formed by covalent or ionic bonding between organic and inorganic components. This covalent bonding can be formed by two different approaches: polymer in situ synthesis in the presence of inorganic particles, in situ formation of inorganic material, or a combination of polymer and inorganic material, both of which are produced ex situ. Interface characteristic is an important factor that changes the characteristics of the developed hybrid system. PCL has high biocompatibility as its degradation products can be metabolized in the body or excreted directly from the body. Because of its biodegradability and biocompatibility, PCL has been approved by the US Food and Drug Administration for use in medical applications. PCL-based materials have been successfully used in bone tissue regeneration, skin tissue engineering and vascular tissue engineering applications. In addition, several drug release studies using PCL-based drug delivery systems have been reported. PCL can be synthesized both chemically and enzymatically via ring-opening polymerization (ROP). Industrially, tin octoate is used as a metallic catalyst. Metallic catalysts operate at high temperature and pressure. Also, the end product may be toxic due to unremoved metallic residue, thus reducing the chances of PCL's medical applications. On the other hand, enzymes are non-toxic and can catalyze reactions in milder conditions. Lipase enzymes catalyze the polymerization of ε-caprolactone (CL). Drug delivery system (DDS) designs improve drug pharmacokinetics and biodistribution and provide a sustained release profile. DDS provides some exceptional properties compared to conventional drug formulations. The major disadvantage of active substances used in the treatment of diseases is that some molecules agglomerate in body fluids due to their hydrophobic character. Conventional drug formulations provide a solution to this complexity by using appropriate additives. However, these additives can have adverse effects on their intended site of action. The drug carrier used in such designs also protects the targeted area from the toxic effects of active molecules by controlling the dosage and keeping it below the toxic limit. Another function of the carrier material is to protect active molecules from premature degradation and rapid degradation by body metabolism. Smart drug delivery systems (SDDS) are systems designed and developed to deliver active substances to the desired site of action and to release them when stimulated by a physical or chemical change. The main purpose of using SDDS is to control the release kinetics so that the active material can be delivered to the desired site of action without causing any side effects to the non-targeted sites. Controlled release of the active ingredient is usually provided by stimuli-responsive polymers. Such polymers can undergo structural changes when exposed to different physical conditions that facilitate drug release. These changes in the physical environment, or 'stimulants', can be light radiation, temperature, pH, and magnetic stimuli. Chalcones are open-chain molecules naturally found in plants. Their chemical structure consists of two aromatic rings with a three-carbon α,β-unsaturated carbonyl system between them. The chemical structure of chalcones can be varied by adding functional groups to aromatic rings. Trans-chalcone (TC) has attracted attention in recent years in terms of its biological activities, due to its abundance in nature, its preparation and its simple structure. TC has been proven to have anticancer activity against several types. The anti-leishmania activity of trans-chalcone has been widely studied. TC is also anti-inflammatory and acts by reducing oxidative stress caused by various inflammatory diseases. However, there are limitations to the clinical use of TC, mainly due to its water-insoluble and thus low bioavailability. TC is a plant-based chemical, so its toxicity in the body is relatively low compared to synthetic drug molecules. However, one extremely risky aspect of TC accumulation in the body is that TC is a proestrogen. TC is metabolically activated to many other chemicals. These compounds have been shown to have estrogenic activity. Many adverse health effects may occur in mammals due to this estrogenic activity of xenobiotic compounds, such as precocious puberty in females, obesity, decreased sperm count, changes in reproductive organs and sexual behavior, and an increase in certain types of cancer. Therefore, it is very important to control the dosage of TC therapy and prevent the accumulation of TC molecules in the body. This study aimed to synthesize a new hybrid polymer based on PCL and silica particles with low crystallinity and hydrophilic character. The synthesis reaction was in situ ring-opening polymerization of ε-caprolactone catalyzed by immobilized Candida antarctica Lipase B. In this study, the free form of Candida antarctica Lipase B was immobilized on rice husk ash by physical adsorption. The specificity and stability of CALB were increased by providing enzyme immobilization. The support material on which the enzyme was immobilized was first prepared by burning rice husks in an oven at 650 °C for 6 hours. The produced RHA is a material with a high silica content, which plays a very important role in the formation of the nanohybrid system in the next steps. In order to add functional groups that will facilitate enzyme adsorption to the RHA surface, the surface was modified using four different organosilane compounds, 3-APTES, 3-APTMS, 3-GPTMS and 3-TMSPDA, before enzyme immobilization. Results from the analysis of TGA curves found that different organosilane compounds behave differently. Surface modification percentages were calculated as 1.2%, 0.8%, 3.7% and 10.1% for 3-APTES, 3-APTMS, 3-GPTMS and 3-TMSPDA, respectively. This reaction took place through the –OH groups of RHA and the methoxy or ethoxy groups of the silanization agents used, and Si-O-Si bonds were formed. After CALB immobilization on surface modified RHA, the resulting catalytic systems were used to catalyze the ROP of ε-caprolactone and to synthesize PKL-based nanohybrid systems in situ. During this reaction, short PCL chains were grafted from the free –OH groups of surface-modified RHA as well as the long, aliphatic chains of pure PCL. Therefore, it is very important to keep the surface modification at an optimum level in order to achieve PCL grafting from silica. Evidence from this analysis shows that increasing the percentage of silanization by a given amount increases the grafting efficiency. Previous studies suggest an inverse relationship between PCL chain length and the number of surface Si-OH groups. The findings of this study are in line with those of previous studies that suggested the role of silanol groups as co-initiators for the polymerization reaction resulting in a high number of growing chains. A significant decrease in the percentage of crystallinity was observed for all nanohybrid samples, which was associated with low molecular weight and inhibition of crystal formation by silica in the nanohybrids. Also increased glass transition temperature due to restricted mobility caused by grafted PCL. PCL-based nanohybrids were hydrophilic. The hydrophilic character of nanohybrids can markedly increase the bioavailability of poorly water-soluble drug molecules. The second aim of this study is to develop TC-loaded microspheres with O/W emulsion and nanospheres with interfacial polymer deposition method and to investigate the loading efficiency and in vitro release behavior.PCL-based nanohybrids synthesized in the first part of this study were used as polymeric carriers in these drug delivery systems. The result of this research showed that there are optimum microsphere formulations with 60-75% encapsulation efficiency. One of the more important findings from this study is that TC release was prolonged in a controlled manner to 22-57 days. It is an important property of our hydrophilic microspheres as it can increase the bioavailability of poorly water-soluble TC. Similar results were obtained with TC-loaded nanospheres produced by interfacial polymer deposition or nano-deposition method. Higher encapsulation efficiency (80-83%) was obtained with nanospheres. TC release from the nanosphere formulation was increased relative to the microsphere formulations; cumulative emissions reached 83-90%. The nanospheres showed pH-dependent release behavior; the acidity of the release medium increased the release. The TC release has been extended to 28 days under neutral conditions. Water contact angle measurements also revealed the hydrophilic character of the nanospheres.
-
ÖgeDevelopment of controlled release tablets and evaluation of release behavior for the treatment of Multiple Sclerosis (MS)(Graduate School, 2025-02-10) Özdemir Akyol, Serenay ; Güvenilir, Fatoş Yüksel ; 506172009 ; Chemical EngineeringPolymers have played an integral role in advancing drug delivery technology by providing controlled release of therapeutic agents at fixed doses over long periods of time, cyclic dosing, and adjustable release of both hydrophilic and hydrophobic drugs. In the field of pharmaceuticals, achieving controlled and targeted drug release is of paramount importance. Over the years, researchers and scientists have explored various approches to optimize drug delivery systems. Among these innovative strategies, polymers effect has emerged as a game-changer. Polymers, with their unique propeties and versatile nature, have revolutionized on drug release within the body. The aim of this study is to develop a controlled drug release mechanism for the active ingredient fampridine, used in the treatment of multiple sclerosis (MS), by designing three different prototypes and presenting the release behavior results of fampridine. The first of the prototypes designed for this purpose encompasses modifications to the unit formulation of the reference product, Fampyra (10 mg extended-release tablets, Biogen Pharmaceuticals). This aims to observe the effect of the type and amount of polymer on the release of fampridine in the conventional dry blending process. Fampridine-containing tablets were prepared using the dry blending process and were compressed at 6-6.5 KN, 20 RPM. In vitro release tests were performed using USP Apparatus II (Paddle). The receptor media contained phosphate buffer pH 6.8, and tests were performed under the conditions of 37°C ± 0.5°C, 50 RPM for 24 hours. In vitro release tests were conducted using Waters HPLC with a UV or PDA detector. For the column, Waters Symmetry C18 100×4.6×3.5μ was used. All methods are validated according to ICH guidelines. Different types of Hydroxypropyl Methyl Cellulose (HPMC), known as K100LV, K100M, and K200M, were used as a polymer filler at various ratios in tablet formulations. All results were compared with the reference product, Fampyra. The purpose of this prototype is to determine how much the cellulose-based polymer present in the reference product affects the release of fampridine. It aims to investigate the impact of using different polymers on both the release of fampridine-containing tablets and the morphological characteristics of the tablets. The significance of this prototype lies in its ability to prevent patented excipients in the unit formula of original products from becoming an obstacle in the development of generic drugs, and to create a generic drug formulation that can achieve a similar effect without infringing on patents. Initially, the unit formula of the reference product was used directly; however, different excipients have been included in the unit formula to address the issues arising in the formulation of the generic drug. 1st prototype's results showed that the type and proportion of polymer used in the unit formulation during the conventional dry blending process significantly affect the release of fampridine. As the viscosity of the polymer and its proportion in the formulation increased, adhesive problems occurred in the tablets, making the release of fampridine more challenging. Since delaying the release of fampridine was a desired outcome, aerosil, which has higher effectiveness than Avicel as a diluent in the formulation, was used to resolve the adhesion issues associated with the use of K200M, which has the highest viscosity. The time period during which the fampridine concentration is stabilized in the solvent medium was 12 hours for the reference product, while it has been extended to 18 hours in the revised unit formula of the generic drug formulation. The results are reproducible, and the methods used have been validated according to ICH guidelines. Second prototype delves into both the formulation of bio-based microspheres containing fampridine for the treatment of multiple sclerosis (MS) and provide an alternative way for the commercially available product (Fampyra 10 mg, Biogen). Encapsulation of fampridine was achieved using polyvinyl alcohol (PVA) and two different polymers know as sodium alginate (Na-Alg) and Chitosan (CS). According to the type of microsphere, Glutaraldehyde (GA) and hydrochloric acid (HCl) or glutaraldehyde and sodium hydroxide (NaOH) were used as cross-linking agents. Polymer ratio (PVA: Na-Alg and PVA:CS), drug: polymer (d: p) ratio, cross-linking agent ratio, and cross-linking time were evaluated on fampridine release. Release studies were analyzed using an ultraviole- visible (UV) spectrophotometer. The microspheres were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy. (FT-IR). The particle size of fampridine-loaded microspheres were determined by the laser-light-scattering device. The purpose of preparing the second prototype is the lack of any studies in the literature regarding fampridine encapsulated by biological polymers, which have been gaining importance recently. By obtaining microspheres with increasingly effective biological polymers, a comparison of the release behaviors with tablets containing fampridine produced by classical methods has been achieved. This will enable the production of an alternative generic drug using a manufacturing method that does not exist in Turkey or even in the world for fampridine. As for results, the study was seperated into two sections. The first one is PVA:Na-Alg microspheres; it was determined that the highest release of fampridine obtained with microspheres prepared with PVA: Na-Alg (w: w) ratio as 1:1, drug: polymer ratio (w: w) as 1:2, cross-linking agent concentration as 2.5% GA + 3% (v:v) HCl, and cross-linking time as 5 minutes. It was observed that all microspheres have 300- 800 μm particle size and the particule size of the microspheres increases d: p ratio paralelly. The second one is PVA:CS microspheres, the highest release of fampridine obtained with microspheres prepared with a PVA:CS (w: w) ratio as 2:1, drug: polymer ratio as 1:2 (w: w), cross-linking agent concentration as 2.5% (v:v) GA + 1M NaOH, and cross-linking time as 5 minutes. It was observed that the release behavior of microspheres does not conform to Fick's Law, as typically seen in release systems created with hydrogels. The aim of the third prototype was to design oral controlled release osmotic pump tablets of fampridine and optimize the drug release profile using response surface methodology, Box Behnken Method. Ostmotic pump tablets were prepared by direct compression with using variying amount of polyoxhyethylene (PoE) which has different molecular weight (Mw) as 300,000 g/mole and 900,000 g/mole and punched as 1 mm and 2 mm with mini tablet punching machine. Constant amount of Celluloce based Opadry EC (10%) (w: w) was used as coating solution. Formulation of tablets and release optimization evaluated with Box Behnken design. 3 factors and 15 levels were used to optimize drug release profile. PoE amount and hole diameter were taken as the independent variables. Response surface plots and contour plots were drawn, and optimum formulations were selected. The Box-Behnken analysis results showed that the optimum release of fampridine occurred when PoE amount was approximately 300 mg. (Mw=300,000 g/mole), with a 2 mm hole diameter. These results are consistent with existing literature and experimental studies and regarding the kinetic results, all tablets exhibited zero-order kinetic. As for evaluating the release of fampridine in the three designed prototypes, it was found that in the first prototype, the release of fampridine was extended by 6 hours compared to the reference product due to minor changes in the polymer and diluent within the formulation. Although promising results were observed in the other prototypes as well, the differentiation of the generic drug's form from the original drug will necessitate clinical studies. Therefore, it is expected that the efficacy of the microspheres will need to be demonstrated through long-term stability studies and that the clinical trials will yield positive results in order to establish them as an alternative to the reference product. This thesis is significant both in the treatment of MS and in research related to the active ingredient fampridine, as such a comprehensive study has not been conducted before. The methodologies employed aim to enhance the comfort of patients suffering from MS and improve the side effect profile of the medication. If the clinical trials of the designed prototypes against the reference product are successful, this research will provide an alternative therapeutic option accessible to patients.
-
ÖgeExploring allosteric mechanisms of chemokine receptor CXCR4 and implications in drug design(Graduate School, 2023-09-07) İnan, Tuğçe ; Levitas Kürkçüoğlu, Özge A. ; 506162009 ; Chemical EngineeringProteins work together with other proteins and bind to biomolecules and ions to perform crucial tasks in living organisms. The active site of a protein controls its functional activity, while ligand binding to its allosteric sites can trigger changes in its shape and adjust its activity. The active sites of the proteins induce vital activities. On the other hand, allosteric sites on which ligands are capable of binding promote their conformational changes, and in this way, fundamental properties of biomolecules can regulate. Therefore, targeting the allosteric sites of the protein is a progressive strategy for drug repurposing or design owing to low side effects compared to orthosteric site targeting. Several computational methods have been utilized to elucidate protein structures and explore new drug-binding regions. Elastic Network Models (ENMs) are valuable for defining collective dynamics and functions. Gaussian Network Model (GNM) is one of the ENMs, which describes the structure consisting of nodes assigned to amino acids and springs between nodes. Here, the amino acids involved in both high and low-frequency motions have a high potential as new allosteric drug binding sites. Another coarse-grained model, the residue network model (RNM), is constructed based on the contact topology. A protein complex comprises edges and nodes using the local interaction strengths of residues. The centrality measure of the betweenness of the network can detect the 'hub residues' having a high capacity to receive and send allosteric signals. These residues also promise plausible drug targets. This thesis begins with elastic network models to identify potential allosteric sites. GNM and RNM are applied to various protein structures. The dataset comprises the allosteric enzymes from the glycolytic pathway, belonging to parasites, bacteria, and humans; class A GPCRs; and the MainPro of SARS-CoV-2. Both models consistently capture the same regions as a potential allosteric site. Also, the Site Identification by Ligand Competitive Saturation (SILCS) approach is applied to GPCRs to determine the allosteric druggable pockets. Among the database, CXCR4 is selected for further docking and molecular dynamic studies. CXCR4 is a member of the CXC motif GPCR, and its ligand, CXCL12, is a chemokine protein. CXCR4/CXCL12 axis influences chemotaxis, particularly tumor cell proliferation and metastasis. CXCR4 gets attention with overexpression in cancer cells and is a coreceptor of HIV. Therefore, in this thesis, a systematic approach is used to explore allosteric binding sites to CXCR4. As a consequence of CXCR4 being found as a homodimer in cancer cells, monomer, and homodimer forms are individually studied. To begin with, the GNM and RIN are employed to discover the critical residues that can participate in allosteric regulations and further propose allosteric sites for CXCR4. Subsequently, the SILCS approach is applied for mapping both monomer and homodimer CXCR4 and revealing the druggability of the allosteric sites proposed. SILCS also indicates ring fragments on those sites, which gain to drug design. Mdpocket also identifies these pockets. The Allosigma web server is also utilized to determine free energy differences profiles of potential allosteric sites of interest. Following, FDA-approved and investigational drugs are docked using SP docking, the Glide module of Schrodinger, and calculate Prime MM/GBSA energies. Considering clinical importance and MM/GBSA energies, 41 ligands are investigated with 50 ns long molecular dynamics (MD) simulations and recalculated MM/GBSA energies. HIV protease inhibitors, antimalarial drugs, and anticancer agents, particularly against breast cancer, are subject to hit compounds. ZINC29238439, bemcentinib, and dibutyl-lumefantrine shine, with high binding free energies for monomer CXCR4. On the other hand, itraconazole, isavuconazonium, and brecanavir stand out among the hit compounds proposed for homodimer. Among the hit compounds, fulvestrant and lumefantrine are selected for 1 μs long MD studies due to biological relevancy with CXCR4. MD runs are performed using the NAMD program. According to the results, the dynamic behaviors of monomer and homodimer CXCR4 are different from each other. Also, allosteric behaviors and ligand effects are determined using essential dynamic analysis (EDA), dynamic cross-correlation map (DCCM), and gRINN, which supplies an energy interaction network.
-
ÖgeInvestigation of the mechanisms of hERG1 blocker toxins as anti-cancer agent with molecular modeling techniques(Graduate School, 2024-02-20) Günay Çolak, Beril ; Yurtsever, Mine ; Durdağı, Serdar ; 509092222 ; ChemistryIon channels are membrane-inserted proteins which regulate the movement of ions through cell membrane. Potassium (K+) ion channels ubiquitously exist in almost all species and locate in cell membranes. Members of this channel family play important roles in cellular signaling, including various processes. It is well-known that K+ ion channels involved in signaling pathways lead to cell proliferation or apoptosis. Because of their location on cell surface and their well-known pharmacology, they can be used as potential targets in anticancer therapies. The human ether-a-go-go related gene 1 (hERG1) K+ channels play crucial role in the heart, different regions of brain, endocrine cells, smooth muscle cells, and numerous tumor cells. It is known that the inherited mutations of hERG1 gene may lead to the disorder of cardiac repolarization (i.e., long QT syndrome (LQTS)), which may result in sudden cardiac death. It is known that K+ ion channels involved in signaling pathways lead to cell proliferation or apoptosis and some specific toxins were investigated for diverse therapeutic applications on targeting the hERG1 K+ channel. Thus, investigation of channel/toxin interactions mechanisms in atomic level is an important topic for the development of toxin-based therapeutics. Thus, in the first part of this thesis, the interaction mechanisms of two toxins named as BeKm-1 and BmTx3b with the closed-state hERG1 channel have been studied by using different molecular modeling techniques including protein-protein docking and molecular dynamics (MD) simulations. The crucial residues of toxins in channel interactions have been elucidated. It is found that R1, K6, K18, R20, K23 and R27 residues in BeKm-1 and F1, K7, K19, K20 and K28 in BmTx3b are the important residues involved in the strong interactions with the closed-state hERG1 K+ channel. The results of this study can be used by medicinal chemists in the designing of diverse therapeutic applications of natural or synthetic peptides targeting the closed state hERG1 K+ channels. In the second part of the thesis, the information that obtained from hERG-BeKm-1 and hERG-BmTx3b interactions, was used to design de novo peptides. The designed de novo peptides were investigated on open-state hERG. In addition to de novo peptides, peptidomimetics and FDA-approved molecules were included in the study to increase the number of molecules studied. It is believed that the data obtained in the thesis study will provide guidance for hERG inhibition for therapeutic purposes. In this way, it is expected to be able to eliminate various types of disease without causing sudden cardiac death.
-
ÖgeMitoksantron taşıma amaçlı BSA-kaplı, folik asit ile hedeflendirilmiş manyetik karbon nanotüplerin geliştirilmesi(Lisansüstü Eğitim Enstitüsü, 2025-01-10) Aydın, Buğçe ; Güner, Seniha F. ; 506172011 ; Kimya MühendisliğiGünümüzde yılda 15 milyondan fazla insana kanser teşhisi konulmaktadır. Vücutta bölgesel olarak başlayan kanser zamanla uzak bölgelere yayılır ve tedavi edilemez hale gelir. Mevcut tedavi yöntemlerinde her geçen gün gelişmeler yaşansa da hastalığın tedavisi halen istenen optimum yöntemlerden uzaktır. Kanser tedavisinde en kritik nokta, ilacın sağlıklı dokulara zarar vermesini engelleyip, tümörlü dokularda birikmesini sağlamaktır. Kanser tedavisine yönelik yapılan çalışmalar; malzeme, moleküler biyoloji, genetik, mühendislik, biyokimya ve cerrahi gibi birçok farklı alanda çalışan araştırmacıların katkısını kapsar ve optimum çözüme ulaşmada bunlardan hiçbiri tek başına başarılı olamaz. Mitoksantron (MTO), kanser tedavisinde yaygın olarak kullanılan antrasendion bazlı bir antikanser ilacıdır. Fakat sağlıklı hücreler/dokular üzerindeki spesifik olmayan etkileri ve çözünürlüğünün düşük olması nedeniyle klinik kullanımı sınırlıdır. Son yıllarda kanser tedavisine yönelik en önemli yaklaşımlardan biri, MTO benzeri ilaçların toksisitesini azaltmaya yönelik hedefli ilaç taşıyıcı nanosistemlerdir. Bu çalışma, dünyada kalp ve damar hastalıklarından sonra ölüme en çok neden olan kanser hastalığının tedavisine katkı sağlayacak MTO taşıyıcı sistemlerin tasarlanması amacıyla kurgulanmıştır. Literatürdeki benzer çalışmalara kıyasla tez çalışması kapsamında geliştirilen nanotaşıyıcı sistemin hem manyetik özellik hem de ligand içerecek şekilde tasarlanması ile ilacın sağlıklı hücrelere kıyasla kanserli hücrelerde salımının gerçekleşmesinin sağlanması hedeflenmiştir. Böylelikle mevcut tedavi yöntemlerinin neden olduğu en büyük sınırlamalardan biri olan sağlıklı hücrelere olan toksik etkinin de minimum seviyede tutulması amaçlanmıştır. Pasif hedefleme ile kanserli ve sağlıklı hücreler arasındaki yapısal farklılıklardan (pH, sıcaklık, geçirgenlik vb.) yararlanılırken, aktif hedefleme için kanserli bölgede reseptörünün fazla olması nedeniyle folik asit bağlı ve manyetik özelliğe sahip nanotaşıyıcılar hazırlanmıştır. Biyolojik uygulamalardaki potansiyellerini artırmak amacıyla son yıllarda manyetik özelliğe sahip karbon nanotüpler (mKNT) geliştirilmiş ve böylece uygulama alanları daha spesifik hale getirilmiştir. mKNT'ler, ilacın harici bir manyetik alan altında tümör bölgesine hedeflenmesini kolaylaştırabilirken, tümör bölgesinin sıcaklığını 46 °C'ye kadar artırarak hipertermi etkisi sağlayabilir. Böylelikle mKNT'ler kanser tedavisinde kemoterapi ilacının yan etkilerinin azaltılması, ilacın hedefe iletilmesi ve dış uyarıcılar ile hipertermi etkisiyle hedef hücrenin/dokunun ortadan kaldırılmasını sağlayarak çok yönlü taşıyıcılar olarak kullanılabilir ve tedavi aşamasında ilaçtan maksimum verim alınması sağlanabilir. Karbon yapıların ilaç taşıyıcı sistemlerde iskelet olarak kullanılabilmesi için istenen özelliklere sahip olması gerekmektedir. Saf KNT hidrofobik ve toksik özellik gösterir. Bu durumu gidermek için; kovalent veya kovalent olmayan yöntemlerle çeşitli moleküller KNT'ye bağlanarak KNT'nin toksik özelliği iyileştirilebilir. Plazmada en bol bulunan protein olan sığır serum albümin (BSA) biyouyumlu olması nedeniyle kaplama malzemesi olarak dikkat çekmektedir. BSA'nın yapısal konfigürasyonu çeşitli ligand bağlanma bölgeleri sağlar ve BSA, KNT'lerin sitotoksisitesini önemli ölçüde azaltabilir. Yayınlanan çalışmalarda antikanser ilaçların kanser hücrelerine karşı seçiciliğini artırmak için hazırlanan nanotaşıyıcılara manyetik özelliğin yanı sıra birçok aktif hedefleme ligandı da konjuge edilmiştir. Bu ligandlar arasında folik asit (FA), düşük maliyeti, toksik olmaması ve yüksek stabilitesi nedeniyle en duyarlı hedefleme moleküllerinden biridir. Ayrıca FA'nın folat reseptörüne (FR) bağlanma afinitesi yüksektir ve FR'ler birçok farklı kanser hücresinde aşırı eksprese edilir. Çalışmanın ilk aşamasında sentezlenen mKNT'ler, BSA ile kovalent yöntemle fonksiyonelleştirilmiştir. BSA-kaplı mKNT (mKNT-BSA), Fourier dönüşümlü kızılötesi (FT-IR) spektroskopisi, Raman spektroskopisi, X-ışını fotoelektron spektroskopisi (XPS), termogravimetrik analiz (TGA), titreşimli örnek manyetometresi (VSM) ve geçirimli elektron mikroskobu (TEM) gibi ileri analiz teknikleriyle karakterize edilmiştir. Analiz sonuçları mKNT'nin BSA ile kovalent modifikasyonunun başarılı olduğunu göstermiştir. Bir sonraki aşamada, BSA-kaplı mKNT'ler, hedeflenen dağıtıma yönelik spesifik olmamaları nedeniyle FA ile fonksiyonelleştirilmiştir (mKNT-BSA-FA). FA-bağlı nanotaşıyıcılar FT-IR, taramalı elektron mikroskobu (SEM), XPS, VSM ve TGA teknikleri kullanılarak karakterize edilmiştir. mKNT-BSA-FA'nın karakterizasyon sonuçları, nanotaşıyıcının doyum manyetizasyon değerinin manyetik hedefli ilaç dağıtım sistemlerinde kullanımı için uygun olduğunu ortaya koymuştur. Sonraki aşamada, mKNT'lerin MTO yükleme ve salım profilleri değerlendirilmiştir. Saf ve kaplanmış mKNT'ler için pH 9'da ilaç yükleme ve fizyolojik (pH 7,4) ve lizozomal pH'ta (pH 5,5) salım deneyleri gerçekleştirilmiştir. mKNT-BSA-FA'nın en düşük ilaç yükleme kapasitesine ve en yüksek ilaç salım (%) miktarına sahip olduğu görülmüştür. Bu duruma mKNT'nin protein ve folik asit ile fonksiyonelleştirilmesinden sonra hidrofilik özellik kazanması neden olmuştur. Nanotaşıyıcıların sitotoksik etkileri sağlıklı HEK293T ve kanserli MDA-MB-231 hücre hatlarında incelenmiş ve her iki hücre hattı üzerinde de doza bağlı sitotoksik etkileri olduğu görülmüştür. Biyouyumlu BSA ve FA ile yapılan fonksiyonelleştirme mKNT'lerin toksisitesini azaltmıştır. Ayrıca, MTO yüklü mKNT, mKNT-BSA ve mKNT-BSA-FA'nın MDA-MB-231 hücrelerinin canlılığını önemli ölçüde azaltmasına rağmen aynı konsantrasyondaki serbest MTO'ya göre daha az sitotoksik etki gösterdiği belirlenmiştir. Sonuçlar, mKNT-BSA-FA'nın çift hedefleme özelliği nedeniyle geleneksel tedavi yöntemlerine kıyasla daha verimli bir ilaç dağıtım sistemi olabileceğini göstermektedir. İlaç taşıma amaçlı tasarlanan malzemenin süperparamanyetik özelliği, harici manyetik alan uygulanarak ilacın hedeflenen bölgeye iletilmesini ve geleneksel kanser tedavisinin neden olduğu kısıtlamaların giderilmesini sağlar. pH'a duyarlı salım, gelişmiş dispersiyon ve süperparamanyetik özelliğe sahip mKNT-BSA-FA, MTO taşıma amaçlı bir nanosistem olarak düşünüldüğünde iyi bir seçim ve umut verici bir adaydır.
-
ÖgeOlefin/paraffin separation in polymer/mof mixed-matrix membranes(Graduate School, 2023-12-22) Doğan, Elif Begüm ; Ahunbay, Mehmet Göktuğ ; Maurin, Guillaume ; 506172006 ; Chemical EngineeringMembranes, due to their low cost, high energy efficiency and ease of processing, have aroused great interest in the field of gas separation. Polymer membranes currently occupy a dominant position in the commercial market, despite the existing tradeoff between permeability and selectivity associated with their use. Over the past decade a novel class of inorganic-organic porous materials, Metal-Organic Frameworks (MOFs), has emerged as a new research domain in solid state materials. These hybrid nanoporous materials formed by the self-assembly of metal ions or clusters, linked together via a variety of bridging ligands, creating stable open structures with sufficiently large pores for industrially-important applications, such as in gas adsorption, storage and separation. Indeed, a number of recent studies have demonstrated that MOFs could be optimal candidates for membrane-based gas separation processes. In addition, owing to the remarkable properties of MOFs, an alternative strategy to overcome the selectivity/permeability trade-off limits of polymer membranes is to make mixed-matrix membranes (MMMs), in which MOF particles are incorporated into polymer matrices. Typically, the alkane/alkene separation is highly topical since it was identified recently as one of the "7 chemical separation to change the world". Propylene (C3H6) is with ethylene (C2H4), the largest feedstock in petrochemical industries with a global production that exceeds 200 million tons per year, with these chemicals mostly used to produce polymer-grade and plastic products, particularly the widely utilized polypropylene. The objective of the PhD will be to predict the separation performances of a series of MMMs for diverse olefin/paraffin separation based on atomistic models constructed for the corresponding MMMs using a combination of force field and quantum calculations. More specifically, we implement an MC/MD simulation scheme to perform simulations of membrane permeation processes. This prediction will pave the way towards the development of the corresponding MMM and their separation testing by collaborators.
-
ÖgeYara örtücü ve benzeri uygulamalarda kullanılmak üzere biyopolimerik filmler geliştirilmesi(Lisansüstü Eğitim Enstitüsü, 2022-08-19) Yıldırımlı Akkaya, Nil Erge ; Giz, Hatice Hüceste ; 509142011 ; KimyaGünümüzde denizlerde ve karalarda kirlilik tehlikeli boyutlara ulaşmıştır. Bu kirliliğin önemli bir kısmı hayatımıza girmiş olan sentetik polimerik malzemelerden kaynaklanmaktadır. Doğada bozunmaları yüzyıllar mertebesinde olan bu sentetik polimerler deniz ve kara hayvanlarının ve hatta insanların da besin zincirine girmiş durumdadır. Bu hal, sentetik polimerlerin kullanıldığı her alan için doğada çözünebilen, bozunabilen alternatiflerinin bulunmasını gerektirmektedir. Çalışmamızda sağlık ve gıda alanındaki ihtiyaca bir ölçü de olsa katkı sağlayabilmek amacı ile biyobozunur olmanın ötesinde insan, hayvan, tüm canlıların rahatça tüketebileceği, doğrudan besin zincirinde yer alan polisakkarit yenilebilir filmlerin elde edilmesi ve özelliklerinin incelenmesi amaçlanmıştır. Biyouyumlu filmlerin sağlık alanında çeşitli kullanım yerleri vardır. Bunlar arasında yara örtücüler ve ilaç salım sistemleri sayılabilir. Pamuk ve selüloz bazlı sargıların yaraya yapışması, değiştirilmesindeki zorluk, yarayı dış etkilerden korumada yetersizlikleri yeni arayışlara yol açmıştır. Biyouyumlu polisakkarit bazlı filmler, yara iyileşmesi için gereken nem ve oksijen miktarını sağlamaları, yarayı mikroplardan korumaları ve yara iyileşmesini hızlandırmaları sebebiyle tercih edilmektedirler. Vücuda uzun süre yapıştırılması gereken ilaç salım sistemlerinde ve uzun iyileşme süresi gerektiren kronik yaralarda iyileşme süresini kısaltmaları ve hasta konforunu arttırmaları dolayısı ile biyopolimerik filmler tercih edilmektedir. Yara örtücülerin yüksek katma değerli malzemeler olması yeni yeni piyasaya girmekte olan polisakkarit filmlerin uygulanma şansını da arttırmaktadır. Yenilebilir gıda ambalajı ise bu filmlerin diğer önemli bir kullanım yeri olacaktır. Günümüzde her dakika 15 ton plastik atık okyanuslara dökülmektedir ve bunun %40 kadarı tek kullanımlık ambalaj malzemeleridir. Bu malzemelerin bozulmaları da yüzyıllar aldığından denizler çöplük halini almaktadır. Avrupa Birliğinin aldığı bir karar gereğince 2030 itibarı ile tüm gıda ambalajlarının biyobozunur olması gerekmektedir. Gıda ambalajlarının biyobozunur ve yenilebilir olması elbette günümüzde alışılmış teknolojilerin terk edilerek yeni teknolojilerin geliştirilmesini gerektirdiğinden ek maliyet anlamına gelmektedir ve rekabetçi pazarın da buna tahammülü yoktur. Ancak tüketicilerin bilinçlenmesi ve doğru tercihler kullanması ile yakın zamanda hayatımıza gireceği kesindir. Çalışmamızda potansiyel yara örtücü ve yenilebilir gıda ambalajı olarak agar, keçiboynuzu zamkı ve salep temelli filmler üretildi. Agar kırmızı deniz yosunundan üretilen bir hidrokolloittir. Agaroz ve agaropektin adı verilen iki ayrı birimden oluşur. Agaroz jelleşebilen yapıdadır, agaropektin ise sülfat grubu taşıyan, yüklü, jel oluşturmayan birimdir. Agar oda ve vücut sıcaklığında suda çözünmez ancak 90oC sıcaklıkta suda çözünür, soğuduğu zaman tekrar heliks yapısını alarak suda çözünmez forma geri döner. Agarın jelleşebilen yapısı ve yüksek sıcaklık çözünürlüğü oda sıcaklığında veya en fazla vücut sıcaklığı olarak 36 - 40oC'lerde güvenle kullanılabilmesine olanak sağlar. Jelleşmesi için sentetik bir çapraz bağlayıcı gerektirmemesi de ayrı bir üstünlüğüdür. Agar filmlerinin mukavemetleri ve yüksek yüzde uzama değerleri bu amaçlar için uygundur fakat antimikrobiyal özellikleri yoktur. Bu sebeple antimikrobiyal özellik gösteren diğer polisakkaritlerle katkılanarak kullanılması yoluna gidilmiştir. Seçilen ikincil malzemelerden biri keçiboynuzu zamkıdır (locust bean gum; LBG). Keçiboynuzu zamkı, keçiboynuzu ağacının tohumlarından elde edilen bir polisakkarittir. Ana zinciri mannan, yan grupları ise galaktoz gruplarından oluşur. Bu yapı jelleşen bir yapı değildir fakat uzun agar zincirleri ile etkileşerek suda çözünmeyen filmler oluşturur. Mekanik özellikleri ve su buharı geçirgenliği de uygun değerdedir. Diğer polisakkarit olarak ülkemize özel bir ürün olan salep seçildi. Salep ülkemizde de yetişen orchid genus orchis adlı yabani bir orkide türünün kök yumrularından elde edilir. Çok bileşenli bir polisakkarittir. Yapısında nişasta, kalsiyum, potasyum, demir klorürleri ve zengin miktarda glukomannan bulunur. Çalışmamızın ilk bölümünde agar-LBG ve agar-Salep filmleri elde edilerek fiziksel, antimikrobiyal özellikleri ve hücre yaşamasına etkileri incelendi. LBG ilavesi filmlerin su buharı geçirgenliğini arttırdı, suda ve fosfat tamponunda çözünmeyen, antimikrobiyal özellikleri saf agar filmlerinden çok daha güçlü, hücre yaşam yüzdeleri saf filmlerden daha yüksek, UV geçirgenliği daha düşük filmler elde edildi. Salep katkısı ise (agar-salep) suda çözünür, su buharı geçirgenliği ve UV geçirgenliği daha düşük, antimikrobiyal özellikleri ve hücre yaşam yüzdeleri daha yüksek filmler elde edilmesini sağladı. Hem LBG hem de salebin antimikrobiyal özellikleri yüksek olduğundan ikili filmlerinin daha yüksek antimikrobiyal özellik taşıyabileceği, yumuşak yapılarının da gerek yara örtücü gerekse yenilebilir film olarak daha uygun olabileceği düşünülerek LBG-Salep filmleri yapıldı. Çalışmanın sonunda, LBG-Salep filmleri agar içeren filmlerden çok daha iyi antimikrobiyal özellik göstermiştir. Tek tek gıdaların ambalajlanmasında veya suda çözünebilen filmler gerektiği durumlarda LBG-Salep filmleri iyi bir alternatif olacaktır. Suda çözünmeyen filmlerin uygulama alanı daha geniştir. Su içeren veya içermeyen gıdalar, hazır yemekler vb. ürünler bu tür filmlerden yapılan ambalajlarda saklanabilir. İlk bölümde üretilen agar-LBG filmleri suda çözünmez yapıdadır. Antimikrobiyal değerleri de saf agar filmlerinden oldukça iyi olmasına rağmen biraz daha arttırabilmek amacıyla agar-LBG filmlerine uçucu yağlar katıldı. Uçucu yağ olarak, antimikrobiyal özellikleri bilinen çörek otu, kantaron ve biberiye yağları seçildi. Çalışma sonucunda transparan, kopma mukavemeti ve kopma uzaması daha düşük filmler elde edilmiş ise de antimikrobiyal sonuçlar beklenen aşırı artışı göstermemiştir. Yağların antimikrobiyal özelliğinin çok artmaması, filmin besin değerini de arttırmış oldukları sebebine bağlanabilir. Bu çalışma sonunda her biri farklı özelliklerde biyouyumlu, biyobozunur, yenilebilir agar, LBG, salep ikili kompozit filmleri ilk defa üretilmiş ve özellikleri incelenmiştir, böylelikle yara örtücü ve gıda ambalajı konusunda yeni ve faydalı alternatifler oluşturduğumuza inanıyoruz.