BE- Bilişim Uygulamaları Lisansüstü Programı
Bu topluluk için Kalıcı Uri
Gözat
Çıkarma tarihi ile BE- Bilişim Uygulamaları Lisansüstü Programı'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeHyperspectral image compression using sparse representations and wavelet transform based spectral decorrelation(Bilişim Enstitüsü, 2017) Jawdhari, Hayder ; Töreyin, Behçet Uğur ; 708151020 ; Bilişim Uygulamaları ; Applied InformaticsSon yıllarda, görüntü işleme alanındaki çalışmaların sayısında ve çeşidinde artış olduğu gözlenmektedir. Birçok dalga boyu bandında algılanan enerji üzerinde hassas kayıt yapabilmek için uzaktan algılama bu alanlardan en önemlisidir. Hipperspektral görüntüler, dijital görüntülerin ve spektroskopinin güçlü yanlarını birleştirir. Bir hiperspektral kamera, komşu spektral bantların büyük bir kısmı için ışık yoğunluğunu yakalar. Hiperspektral görüntüler, farklı izgelere olan duyarlılıklarından ötürü, algıladıkları nesnelerin kimyasal içeriğine ilişkin önemli bilgiler sunmaktadır. Uydu görüntüleri ve özellikle hiperspektral görüntüler, farklı bilimlerin birçok alanı için önemli veri kaynağıdır. Uydu görüntüleri, insan gözü veya diğer teknolojiler tarafından algılanamayan, yeryüzündeki geniş bir alanı kaplar. Uzaktan algılama terimi ilk olarak 1960'larda kullanıldı. Bu teknoloji, yeryüzünün uzaktan gözlenmesini esas almıştır. Yeryüzünü izlemek için farklı yükseklikteki uydular kullanılır. Bu çalışmada, çevrimiçi öğrenmeyi temel alan seyrek kodlamayı kullanarak kayıplı bir hiperspektral görüntü sıkıştırma yöntemi önerilmektedir. Hiperspektral görüntüleri çevrimiçi sözlük öğrenme yöntemine dayanan seyrek kodlama algoritması uygulayarak temsil etmek için en az sayıda katsayı elde edilir. Sonuçlar, sıfır olmayan sözlük öğelerinin bir ön analizinin, genel sıkıştırma kalitesini iyileştirmede yardımcı olabileceğini ortaya koymaktadır. Seyrek kodlama tabanlı hiperspektral görüntü sıkıştırma, literatürdeki tekniğin mevcut durumunu yansıtan yöntemlere göre, özellikle düşük bit hızlarında daha iyi veri hızı- bozunum başarımı vermektedir Seyrek gösterim, önceden eğitilmiş bir sözlükten birkaç sözcüğün (atomun) doğrusal bileşimi olarak sinyalleri modelleme yeteneğine sahiptir. Sinyallerin gösterilmesinde çok seyrek doğaya neden olan uyarlanabilir bir sözlük öğrenmeyi sağlar. Bu çalışmada, seyrek gösterim, kayıplı bir hiperspektral veri sıkıştırma çerçevesinde konuşlandırılmıştır. Spektral korelasyonun yanı sıra hem spektral hem de mekansal korelasyondan yararlanan sözlükler çevrimiçi sözlük öğrenimi kullanılarak eğitilir. Daha sonra, hiperspektral bir veri, seyrek kodlama yoluyla öğrenilen sözlük kullanılarak gösterilir. Oluşan seyrek katsayılar nihai bit akışı formüle etmek için kodlanır. Bir dizi hiperspektral veri kümesindeki deneysel sonuçlar, önerilen yaklaşımın hız-bozulma performansı açısından 3D-SPIHT gibi dalgacık tabanlı yöntemlerle rekabet ettiğini göstermektedir. xxii Seyrek modeller, sıfır olmayan elementlerle verilerin temsil edilmesini sağlar. Seyrek modellerin bu özelliği, veri sıkıştırma amacıyla seyrek modellerin kullanılmasının uygun olabileceğini düşündürmektedir. Teknolojinin gelişmesiyle birlikte, görüntüleme teknolojileri, hiperspektral görüntüleme gibi görüntüleme yeteneklerine ve gelişmiş görüntüleme özelliklerini olanaklı kılmıştır. Hiperspektral görüntülerin kullanılması ile, spektral düzlemdeki dar bant genişlikleri ile çok büyük miktarda veri işlenmeye başlandı ve daha yüksek hesaplama maliyetleri oluştu Sınıflandırma performanslarındaki artışa rağmen, bu büyük boyutlu verilerin boyutunun azaltılması önemli bir olgu hâline geldi. Bu çalışmada, çevrimiçi öğrenmeyi kullanan seyrekliğe dayalı hiperspektral görüntü sıkıştırma yöntemleri için bir çerçeve ve dalgacık dönüşümüne dayalı bir izgel ilintisizleştirme önerilmektedir. Bu amaçla, tamsayı katsayılı dalgacık dönüşümü süzgeçleriyle izgel ilintisizleştirilen hiperspektral veri, JPEG2000 kodeği ile kayıpsız olarak, seyrek gösterimlere dayalı yöntemle ise kayıplı olarak sıkıştırılmaktadır. Bu sâyede, kayıpsız ve kayıplı sıkıştırma yöntemlerinin en uygun yönlerini bünyesinde barındıran melez bir hiperspektral veri sıkıştırma yöntemi geliştirilmiştir. Farklı seyrek optimizasyon modelleri bulunmaktadır. Hiperspektral görüntü sıkıştırma başarımı ile ilgili seyrek gösterimlerin bağıl analizne de yer verilen çalışmada, çevrimiçi öğrenme tabanlı hiperspektral görüntü sıkıştırma modları iki farklı seyrek gösterimle sunulmaktadır. İki veri kümesi için hiperspektral görüntüler, üç seviye dalgacık dönüşümüyle izgel ilintisizleştirilerek sıkıştırılmaktadır. Bu çalışma, iki tür veri kümesinden elde edilen (AVIRIS ve HYPERION) iki farklı hiperspektral veri üzerinde sonuçların alınmasını sağlamıştır. Ortalama Kare Hata (MSE) işlemine dayalı olarak belirlenen PSNR değeri, sonuç başarımlarının karşılaştırılması amacıyla kullanılmaktadır. Bu tezde, verilerin mümkün olduğunca içsel bağıntısını kullanmak için tamamen veri tabanlı tekniklerden (sözlük öğrenme tabanlı seyreltik gösterimler) ve sabit katsayı dönüşümü (wavelet / DCT) temelli algoritmalardan yararlanarak dengeli bir hiperspektral görüntü sıkıştırma yaklaşımı önermekteyiz. Bu bağlamda, hiperspektral veriler tam rekonstrüksiyon elde etmek için tamsayılı dalgacık dönüşümü temelli filtre bankaları kullanılarak spektral olarak ilintisizleştirilir. Spektral olarak ilintisizleştirilen verilerin, yüksek bant kısımları JPEG2000 standardıyla kodlanacak şekilde sıkıştırılırken, düşük bantlı veriler için çevrimiçi sözlük öğrenme çerçevesini kullanarak seyrek bir gösterim elde edilir. Tezin katkısı, veriye dayalı uyarlanır katsayılı yaklaşımlar ile veriden bağımsız, sabit katsayılı süzgeç temelli yaklaşımların melez ve yenilikçi bir yaklaşımla harmanlanarak yeni bir hiperspektral veri sıkıştırma yöntemini ilk kez öneriyor oluşudur. Böyle bir yaklaşımın arkasındaki ana motivasyon, her iki yöntemin de hiperspektral görüntü sıkıştırma amaçları için yararlanılmasıdır. Hiperspektral görüntülerin kayıplı sıkıştırılması için ayırt edici bir çevrimiçi sözlük öğrenme yöntemine dayanan seyrek kodlama algoritması önerilmiştir. Değişken sayıda sıfır olmayan sözlük unsurlarının etkileri de analiz edilmiştir. Sonuçlar, önerilen çevrimiçi öğrenme temelli seyrek kodlama algoritmasının, PSNR değerleri bakımından xxiii daha iyi performans gösterdiği için, daha yüksek veri hızları için kullanılabileceğini göstermektedir. Ayrıca, sıfır olmayan sözlük öğelerinin sayısının bir ön analizinin sıkıştırma yaklaşımının başarımını artırabileceği değerlendirilmektedir.
-
ÖgeLinear interference alignment in cognitive radio networks(Informatics Institute, 2028-06-08) Alakoca, Hakan ; Durak Ata, Lütfiye ; 708151027 ; Applied InformaticsMulti-input multi output (MIMO) systems are still developing via substantial research effort in the literature and leading telecommunication industry. MIMO communications that is a solution as countering fading and deep fade effect in wireless communication, presents spatial diversity of the system and increases data rates. Yet, the effective operation of MIMO systems depends on the design of the pre-coding and post-coding matrices. Cognitive radio networks, which have been proposed for a long time in the literature, are still being developed. The communication of two different types of users is achieved on the principle that they are based on the use of different kinds of techniques as a solution to the spectrum scarcity. Primary users are allocated as licensed users, besides secondary users are considered as unlicensed users in cognitive radio networks. Overlay, underlay and interweave techniques are among the outstanding techniques in the literature. It is essential to minimize interference components that occur between the primary users and the secondary users so that these techniques can work effectively. Interference alignment (IA) is a remedy for eliminating interference components due to the interference channel in MIMO networks. There are many variants for IA in the literature and linear interference alignment technique is the most frequently used due to its applicable approach. In the IA method using the MIMO network structure, the interference components are aligned in a specific direction by using the precoding and interference suppression matrices. However, the destruction of these interference components is accompanied by operative signal processing implementation. Additionally, IA technique has also known harmonious structure for CR networks. In this thesis, the interference alignment performance of a MIMO CR network is examined in the presence of multiple secondary users. In the proposed architecture, it is assumed that linear IA is used at the primary system to alleviate the interference between primary and secondary networks. Although linear IA can surpass the interference in CR considerably, interference leakages may occur due to fast fading channel. Herein, we derive the closed-form outage probability expression considering the interference leakage occurred in the primary system. The results which are validated with Monte-Carlo simulations show that interference leakages can deteriorate both system performance and diversity gains considerably. Furthermore, precoder and interference suppression matrix design is covered using the IA technique with MIMO zero-forcing receiver structure. Precoder and interference suppression matrix is designed considering the presence of a single primary user and two secondary users in the wireless environment. Sum rate performances and bit error rate performances are presented for both primary users and secondary users with respect to the number of antennas and distance.