Bilgisayar Bilimleri Lisansüstü Programı - Yüksek Lisans
Bu koleksiyon için kalıcı URI
Gözat
Yazar "Dolu, Onur" ile Bilgisayar Bilimleri Lisansüstü Programı - Yüksek Lisans'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeParçalı Gabor Öznitelikleri Kullanarak En Yakın Komşu Ayrışım Analizi Tabanlı Yüz Tanıma(Bilişim Enstitüsü, ) Dolu, Onur ; Gökmen, Muhittin ; 371544 ; Bilgisayar Bilimleri ; Computer ScienceSon yıllarda, ışık varyasyonlarına ve yüz ifade değişikliklerine karşı gürbüz olduğu üzere yüz tanıma alanında Gabor öznitelikleri tabanlı yüz temsil etme çok umut vaad edici sonuç vermiştir. Seçilen uzamsal frekans, uzamsal lokalizasyon ve yönelime göre yerel yapıyı hesaplaması, elle işaretlendirmeye ihtiyaç duymaması Gabor özniteliklerini efektif yapan özellikleridir. Bu tez çalışmasındaki katkı, Gabor süzgeçleri ve En Yakın Komşu Ayrışım Analizi'nin (EYKAA) güçlerini birleştirerek önemli ayrışım öznitelikleri ortaya çıkaran Gabor En Yakın Komşu Sınıflandırıcısı (GEYKS) genişletip Parçalı Gabor En Yakın Komşu Sınıflandırıcısı (PGEYKS) metodunu ortaya koymaktır. PGEYKS; alçaltılmış gabor öznitelikleri barındıran farklı segmanları kullanarak, her biri ayrı dizayn edilen birçok EYKAA tabanlı bileşen sınıflandırıcılarını bir araya getiren grup sınıflandırıcısıdır. Tüm gabor özniteliklerinin alçaltılmış boyutu tek bir EYKAA bileşeninden çıkarıldığı gibi, PGEYKS; ayrışım bilgi kaybını minimum yapıp 3S (yetersiz örnek miktarı) problemini önleyerek alçaltılmış gabor öznitelikleri içindeki ayrıştırabilirliği daha iyi kullanır. PGEYKS yönteminin tanıma başarımı karşılaştırmalı performans çalışması ile gösterilmiştir. Farklı ışıklandırma ve yüz ifadesi deişiklikleri barındıran 200 sınıflık FERET veritabanı alt kümesinde, 65 öznitelik için PGEYKS %100 başarım elde ederek atası olan GEYKS'nın aldığı %98 başarısını ve diğer GFS (Gabor Fisher Sınıflandırıcı) ve GTS (Gabor Temel Sınıflandırıcı) gibi standard methodlardan daha iyi sonuçlar vermiştir. Ayrıca YALE veritabanı üzerindeki testlerde PGEYKS her türlü (k, alpha) çiftleri için GEYKS'ten daha başarılıdır ve 14 öznitelik için step size = 5, k = 5, alpha = 3 parametlerinde %96 tanıma başarısına ulaşmıştır.