Ölçekten Ve Pozdan Bağımsız Gerçek Zamanlı Yüz Bulma Ve Izleme

Yükleniyor...
Küçük Resim

Tarih

item.page.authors

Süreli Yayın başlığı

Süreli Yayın ISSN

Cilt Başlığı

Yayınevi

Fen Bilimleri Enstitüsü
Institute of Science and Technology

Özet

Bu çalışmada görüntü tabanlı en gözde ve en yeni yöntemlerden biri olan ve Adaboost algoritması, “Integral Görüntü” tekniği ve kaskat sınıflandırıcılara dayalı yöntem kullanılarak insan yüzünün bulunması ve izlenmesi gerçeklendi. Beş değişik poza (sol, sol+45°, ön yüz, sağ+45° ve sağ) ait insan yüzü bu yöntemle eğitildi. Ayrıca, kolay uygulanabilirliğinden ve gerçek zamanlı uygulamalardaki hızından dolayı, yüzün izlenmesi için CAMSHIFT algoritması kullanıldı. Görüntü işlemenin gerçek zamanlı uygulamalara kötü yöndeki etkisinden kaçınmak için paralel programlama gerçeklendi. Bunu sağlamak için iki iplikçik (ana ve çocuk) oluşturuldu. Çocuk iplikçik alınan görüntü çerçeveleri üzerinde yüzleri bulmaya çalışırken, ana iplikçik de gelen tüm görüntüleri çoçuk iplikçikten aldığı veriye göre işler ve bunu kullanıcı penceresine basar. Sonuç olarak, insan yüzlerini bulma ve izleme sistemi başarılı bi gerçeklendi ve üç farklı test kümesi ile bir video kümesindeki test sonuçlarına göre yüksek başarım oranı sağladığı görüldü.
In this study, one of the most popular and recent appearance based face detection method used which is a combination of Adaboost algorithm, Integral Image and cascading classifiers. Faces are trained for five different poses (left, left+45°, front, right+45° and right). Also, CAMSHIFT algorithm is used for face tracking because of its speed and easy implementation for face. To avoid impact of image analysis’s computations on Real-time application, parallel processing methods were used. Two processes (main and child) were created for this purpose. Child process detects faces periodically on the given frame while the main one process all frames and displays the results of child process to the user screen. In conclusion, our face detection and tracking system has been implemented successfully and it has demonstrated significantly high detection/tracking rates based on the tests on three different image databases and one video database.

Açıklama

Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008

Konusu

Yüz Bulma, Yüz İzleme, Adaboost, CAMSHIFT, OpenCV, Face Detection, Face Tracking, Adaboost, CAMSHIFT, OpenCV

Alıntı

Endorsement

Review

Supplemented By

Referenced By