Küresel Olmayan Malzemelerin Sabit Yatak Hidroliği
Küresel Olmayan Malzemelerin Sabit Yatak Hidroliği
Dosyalar
Tarih
2010-04-07
Yazarlar
Erdim, Esra
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Bu çalışmada Ergun denkleminin mevcut katsayıları ile sabit yataklarda küresel olmayan malzemeler için geçerliliği araştırılmıştır. İlk aşamada denklemin küresel malzemeler için kullanılıp kullanılamayacağını araştırmak üzere 9 farklı boyutta cam küre ile çalışılmış ve denklemin mevcut katsayıları ile küreler için oldukça başarılı neticeler verdiği belirlenmiştir. Bu bulgu ile aynı zamanda kullanılan deneysel düzeneğin ve yöntemin güvenilirliği de teyit edilmiştir. İkinci aşamada farklı şekillerde (küp, silindir, halka, tablet, dikdörtgenler prizması, üçgen prizma) ve boyutlarda olmak üzere özel olarak imal edilmiş 11 çeşit düzgün geometrik malzeme ile sabit yatak deneyleri yürütülmüştür. Düzgün geometrik şekillerin küreselliği teorik olarak hesaplanabildiği için değişik hızlarda meydana gelen yük kayıpları Ergun denklemi ile hesaplanmış ve deneylerde ölçülen yük kayıpları ile karşılaştırılmıştır. Kullanılan malzemelerden her biri için Ergun denklemindeki katsayıların ne derece geçerli olduğu ve beklenebilecek hata oranları tespit edilmiştir. Teorik küresellik ve teorik çap değeri bilinen düzgün şekilli malzemelerden oluşan sabit yataklar için Ergun denkleminin yük kayıplarını % 11 - 55 aralığında değişen hatalar ile tahmin edebildiği görülmüştür. Bu kadar geniş bir hata aralığı Ergun denkleminin mevcut k1 ve k2 katsayıları ile küresel olmayan malzemeler için kullanılamayacağı sonucuna varılmasını sağlamıştır. Son aşamada ise su filtrasyonunda yaygın olarak kullanılan malzemelerle deneyler yürütülmüştür. Değişik boyutlarda ve değişik kaynaklardan elde edilmiş 6 fraksiyon kum, 5 fraksiyon perlit, 8 fraksiyon garnet ve 3 fraksiyon kırık cam ile gerçekleştirilen deneylerde Ergun tarafından teklif edilen k1 ve k2 değerlerini kullanarak yük kaybı verilerinin ne kadar iyi temsil edilebildiği araştırılmıştır. Ergun denkleminin mevcut katsayıları ile kum, perlit ve garnet için yük kaybını tahmin etmekte başarılı olduğu görülmüştür.
In this study, the validity of Ergun equation in fixed beds for non-spherical particles with its original coefficients was examined. First, experiments were conducted with 9 different sized glass spheres in order to determine the validity of the equation for spherical particles and it was found out that the equation was fairly successful. This finding also confirmed the reliability of the experimental set-up and the method applied. In the second stage, fixed bed experiments were conducted with 11 types well defined geometric shaped particles of different shapes (cube, cylinder, hollow ring, tablet, rectangular prism, triangular prism) and sizes. As the sphericity of the well defined geometrical particles can be calculated theoretically, head-loss measured at various flow rates were compared with the head-loss calculated by Ergun equation. The possible error and the validity of the coefficients in the Ergun equation was determined for each type of media. It was found that Ergun equation could predict the head-loss within 11%-55% for fixed beds made of well-defined geometric shapes whose sphericity and equivalent diameter are calculated theoretically. Such a wide range in the prediction lead to the idea that Ergun equation can not be used for non-spherical particles with the proposed coefficients. Finally, experiments were carried on a variety of media used in water filtration. 6 fractions of sand, 5 fractions of perlite, 8 fractions of garnet and 3 fractions of crushed glass with various sizes were obtained from several sources. It was examined how strongly the headloss data could be presented by using the coefficients as proposed by Ergun. The equation was found to be successful in predicting the head-loss for sand, perlite and garnet.
In this study, the validity of Ergun equation in fixed beds for non-spherical particles with its original coefficients was examined. First, experiments were conducted with 9 different sized glass spheres in order to determine the validity of the equation for spherical particles and it was found out that the equation was fairly successful. This finding also confirmed the reliability of the experimental set-up and the method applied. In the second stage, fixed bed experiments were conducted with 11 types well defined geometric shaped particles of different shapes (cube, cylinder, hollow ring, tablet, rectangular prism, triangular prism) and sizes. As the sphericity of the well defined geometrical particles can be calculated theoretically, head-loss measured at various flow rates were compared with the head-loss calculated by Ergun equation. The possible error and the validity of the coefficients in the Ergun equation was determined for each type of media. It was found that Ergun equation could predict the head-loss within 11%-55% for fixed beds made of well-defined geometric shapes whose sphericity and equivalent diameter are calculated theoretically. Such a wide range in the prediction lead to the idea that Ergun equation can not be used for non-spherical particles with the proposed coefficients. Finally, experiments were carried on a variety of media used in water filtration. 6 fractions of sand, 5 fractions of perlite, 8 fractions of garnet and 3 fractions of crushed glass with various sizes were obtained from several sources. It was examined how strongly the headloss data could be presented by using the coefficients as proposed by Ergun. The equation was found to be successful in predicting the head-loss for sand, perlite and garnet.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2010
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2010
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2010
Anahtar kelimeler
Küresel olmayan malzeme,
Sabit yatak,
yük kaybı,
Non-spherical particle,
Fixed bed,
Head loss