Design and development of pva/hydrocortisone loaded xerogel nanofibrous mat for topical drug delivery

thumbnail.default.alt
Tarih
2023
Yazarlar
Moussa, Hissam Ali Muhammad Ali
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Graduate School
Özet
Textile materials have always been utilized in the medical field. The unique properties they offer, biocompatibility and versatility are the major reasons behind that. They can be found in applications ranging from a simple bandage to full on blood vessels. Nanofiber-based textile materials are textile materials known for their high surface area and interconnected porosity. Nanofiber- based textile materials can be fabricated with a variety of methods yet; the most dominant method is electrospinning. Furthermore, in the recent years there has been a rise of interest in different materials as well such as; aerogels. Aerogels are porous materials that have unique properties that make them good candidates for drug careering and releasing. Aerogels can be made of different materials such as polymers, biopolymers and metal oxides but the most common types of aerogels are silica, carbon and metal oxide aerogels. The process of synthesizing aerogel consists mainly of three stages; gelation, aging and drying. The process of drying aerogels affects the synthesized aerogel greatly as you can have three different types of aerogels by just using a different drying technique. Xerogel is one of the types of aerogels and it is achieved by drying aerogels at ambient pressure. This study aimed to design and develop a PVA/hydrocortisone loaded xerogel electrospun mat for topical drug delivery. The silica xerogel was synthesized using TMOS as a silica precursor, Ammonium hydroxide as a catalyst and Methanol as a co-solvent. The xerogel was ball-milled into fine powder and had its surface area, pore size and volume analyzed. In addition to that, hydrocortisone was loaded into three different samples; one consisting of only xerogel, the second of only PVA nanofibrous mat and the third consisting of both xerogel and PVA nanofibrous mat. In vitro drug release analysis was carried out for all of these samples. PVA was chosen for its biocompatible properties and stability. SEM and EDAX analyses were carried out to investigate the surface of the fibers and elements existing in the samples respectively. In addition to that, FTIR analysis was performed to identify the different materials making up the nanofibrous mats. The synthesized silica xerogel had a surface area of around 505 m²/g, pore size of around 3.8 nm and a pore volume of 0.48 cm³/g. SEM images showed the hydrocortisone loaded xerogel inside the PVA nanofibrous mat and the EDAX analysis confirmed the existence of silicone in the samples due to the existence of silica xerogel as well as a high concentration of Carbon due to hydrocortisone. The hydrocortisone loaded xerogel showed a slow sustained drug delivery release behavior and around 69.3% of the loaded hydrocortisone was released in 25 days. The PVA/xerogel/hydrocortisone nanofibrous mat showed a similar drug release behavior with a release of around 79.2% of the hydrocortisone initially loaded with PVA was released in just 30 minutes. Demonstrating a conventional or retarded drug release behavior. Meanwhile, the PVA/hydrocortisone electrospun mat showed a completely different drug release behavior. Around 98.55% of the hydrocortisone initially loaded into the PVA. In conclusion, Silica xerogel as a drug carrier was successfully synthesized. It was loaded with hydrocortisone. Hydrocortisone loaded silica xerogel drug release was investigated as well as PVA/xerogel/hydrocortisone and PVA/hydrocortisone. The result of these three different sample types were collected and compared. Both hydrocortisones loaded xerogel and PVA/xerogel/hydrocortisone showed a slow sustained drug release behavior. Meanwhile PVA/hydrocortisone showed a retarded drug release behavior. These results suggest the capability of PVA/hydrocortisone load xerogel mat to work as a sustained/controlled topical drug delivery carrier.
Açıklama
Thesis (M.Sc.) -- İstanbul Technical University, Graduate School, 2023
Anahtar kelimeler
textile materials, biocompatibility, biopolymers, topical drug delivery
Alıntı