Ağır ticari bir araçta kabin yapısının aerodinamik direnç üzerindeki etkisi

thumbnail.default.alt
Tarih
2022-06-02
Yazarlar
Aktaş, Cemal Dinçer
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Lisansüstü Eğitim Enstitüsü
Özet
Yük taşımacılığı, dünya çapındaki ticari malların taşınmasının fiziksel sürecidir. Deniz aşırı taşımacılıkta gemiler ön plana çıksa da karayolu taşımacılığında ağır ticari araçlar önemli bir paya sahiptir. Son 10 yıldır Avrupa kıtasındaki karayolu taşımacılığının yaklaşık %75`inde ağır ticari araçlar görev almaktadır. Yük taşımacılığı ile transfer edilen her bir ürün fiyatına aynı zamanda taşımacılık masrafları da yansıtılmaktadır. Bu sebeple küresel anlamdaki ticari faaliyetlerde yük taşımacılığı maliyetlerini azaltmak evrensel bir amaçtır. Yük taşımacılığı sektöründeki ağır ticari araçlar her gün yüzlerce kilometre yol almaktadır. Günümüzde içten yanmalı motor kullanan bu araçların sebep olduğu CO2 salınımı Avrupa Birliğindeki toplam CO2 salınımının %6`sını, karayolu ulaşımından kaynaklanan salınımın ise %25`ini oluşturmaktadır. Dünya çapında her geçen gün artan taşımacılık faaliyetleri CO2 salınımı için büyük bir tehdit oluşturmaktadır. CO2 salınımının ortaya çıkaracağı iklim krizinin önlenmesi amacıyla Avrupa Birliği tarafından ağır ticari araçlar için ilk karbon salınımı yönetmeliği 2019 yılında yürürlüğe girmiştir. Buna göre araç üreticilerinin önümüzdeki 5 ve 10 yıl içerisinde ürettikleri araçların CO2 salınımlarını %15 ve %30 olarak kademeli bir şekilde azaltması gerekmektedir. Bu nedenle araç üreticilerine büyük bir sorumluluk düşmektedir. Ağır ticari araçların CO2 salınımında birkaç farklı parametre etkilidir. İçten yanmalı motor karakteristiği, yuvarlanma direnci ve aerodinamik direnç bunların önde gelenleridir. Hareket esnasında aracın maruz kaldığı tüm direnç kuvvetleri düşünüldüğünde araç hızı arttıkça aerodinamik direncin etkisinin de arttığı görülmektedir. Ayrıca sıfır CO2 salınımına sahip araçların güç tüketiminin azaltılması için de aerodinamik direncin azaltılması öncelikler arasındadır. Bu nedenle ağır ticari vasıtalarda aerodinamik direnç kuvvetinin azaltılması için birçok çalışma mevcuttur. Bu çalışmalar içerisinde aynı zamanda treyler yapısı da incelenmektedir. Treyler yapısının incelendiği çalışmalarda genel olarak treyler üzerine eklenen parçalar ile aerodinamik direncin azaltılması hedeflenmektedir. Ancak eklenen bazı parçalar kaza güvenliği için tehdit oluşturmakta ve konteyner tipi treylerlerin gemilerde istiflendiği sırada daha fazla yer kaplamalarına sebep olmaktadır. Bu nedenlerden dolayı araç kabini üzerindeki iyileştirme çalışmaları daha ön plandadır. Avrupa ve Amerika kıtalarındaki farklı uzunluk yönetmeliklerinden dolayı farklı ülkelerde kullanılan kamyonların kabin türleri de birbirinden farklıdır. Amerikan yönetmeliklerine göre taşınan yükün uzunluğu bir sınıra bağlanmıştır. Avrupa yönetmeliklerinde ise kabinin önünden treylerin arkasında kadar olan kamyon-treyler ikilisinin toplam uzunluğu limitleri aşmamalıdır. Bu durum iki farklı kabin tipinin oluşmasına sebep olmuştur. Amerika kıtasında kullanılan kamyonlarda motor aracın ön kısmında bir çıkıntı gibi paketlenmektedir. Ayrıca kabin içerisinde sürücüler için oluşturulan yaşam alanı da oldukça geniştir. Bu tip kabinler geleneksel kabin olarak adlandırılır. Avrupa kıtasında kullanılan kamyonlarda ise uzunluk sınırları sebebi ile motor kabinin altına paketlenmektedir. Ayrıca treylere serbest bir hareket imkanı sağlanması için araç kabini ile treyler arasındaki boşluk da bir limite bağlıdır. Bu tip kabinler de motor üstü kabin olarak adlandırılır. Motor üstü kabinler, uzunluk sınırları sebebi ile geleneksel kabinlere göre daha kaba ve köşeli tasarımlara sahiptirler. Motor üstü kabinler tasarımlarından dolayı geleneksel kabinler göre daha yüksek aerodinamik dirence maruz kalmaktadır. Bu sebeple motor üstü kabinler aerodinamik anlamda gelişime daha çok ihtiyaç duymaktadır. Günümüzde motor üstü kabine sahip kamyonların aerodinamik direncinin azaltılması için araçlara çeşitli parçalar eklenmektedir. Bu amaçla araç tavanına ve yan duvarlara eklenen kapama parçaları araç ile treyler arasındaki boşluğa hava girişini engelleyerek aerodinamik fayda sağlanmaktadır. Ancak araç üzerine eklenen parçalar ile elde edilecek aerodinamik kazanç sınırlıdır. Aerodinamik direncin daha da azaltılması için kabin tasarımında değişiklik yapılması kaçınılmazdır. Bu amaçla motor üstü kabine sahip araçların belirli sınırlar dahilinde geleneksel kabin gibi uzatılması güncel bir araştırma konusudur. Bu çalışmada kamyon kabini üzerinde yapılacak yenilikçi tasarımlar ile aerodinamik direncin azaltılması ve daha çevreci araç tasarımlarına öncülük edilmesi için HAD analizlerinden yararlanılmıştır. Tez çalışmasında kullanılan HAD yöntemlerinin doğruluğu literatür çalışmaları kullanılarak ispatlanmıştır. Bu amaçla basitleştirilmiş bir kamyon modeli üzerinde 3 farklı türbülans modeli kullanılarak HAD analizleri gerçekleştirilmiştir. Çalışma sonuçları deneysel veriler ile karşılaştırılmıştır. Literatürde aynı kamyon modeli için farklı türbülans modelleri ile yapılan çalışmalar da karşılaştırmalara dahil edilmiştir. Bu karşılaştırmalar kapsamında öncelikle Cd değerleri incelenmiştir. Ek olarak belirli bir araç yüzeyindeki basınç dağılımları da farklı türbülans modelleri kullanılarak hesaplanmış ve literatür çalışmaları ile karşılaştırılmıştır. Doğrulama çalışmaları neticesinde detaylı kamyon modelinde kullanılacak sayısal ağ yapısına ve türbülans modeline karar verilmiştir. Çalışmada ağır ticari bir aracın aerodinamik karakteristiğinin incelenmesi ve geliştirilmesi amaçlanmıştır. Bu amaçla yapılacak HAD analizlerinde Ford Otosan tarafından geliştirilip üretilen ve 2016 yılında yollara çıkan Ford F-max aracı kullanılmıştır. Ford F-max aracı için detaylı bir geometrik model oluşturulmuş ve kalite parametrelerine uygun sayısal ağ yapısı örülmüştür. Aracın aerodinamik özelliklerinin geliştirilmesi amacıyla burunlu kamyon kavramı ele alınmıştır. Mevcut araç kabinin uzatılarak burunlu kamyon tasarımının elde edilebileceği 3 farklı kabin oluşturulmuştur. Burada araç üzerinde yapılacak değişikliklere farklı kabinlerin vereceği cevaplarında incelenmesi hedeflenmiştir. İncelenen farklı araç kabinlerinden ilki referans modeldir. İkincisinde, aracın ön camı dikleştirilmiştir, sonuncusunda ise aracın ön camı dikleştirilirken ve A-sütununda da kavisli bir yapı incelenmiştir. Kabin üzerinde köklü değişiklikler yapılsa da üç farklı kabin için HAD analizleri neticesinde elde edilen CD değerlerine bu değişiklikler yansımamıştır. HAD sonuçları incelendiğinde araç üzerinde yapılan değişiklikler ön cam ve A-sütunu civarında iyileştirme sağlarken aracın farklı bölgelerinde mevcut durumu kötüleştirmiştir. Bu nedenle araç üzerindeki farklı parçaların aerodinamik direnç üzerindeki etkileri de 3 farklı kabin için incelenmiştir. Bu amaçla ilk olarak ön camın üst kısmında bulunan güneşlik parçası modellerden çıkarılmıştır. Güneşliksiz model sonuçları incelendiğinde, cam dikleştirme tasarımının cam üzerindeki basıncı azaltırken güneşlik üzerindeki basıncı arttırdığı tespit edilmiştir. Farklı kabin tasarımları ile elde edilebilecek aerodinamik faydanın güneşlikten dolayı gölgelendiği belirlenmiştir. Ardından benzer şekilde yan aynaların etkisi incelenmiştir. Yolcu araçlarında yan aynalar araç etrafında akış ayrılmalarına sebep olan bir parçadır ve yolcu araçlarından aynaların çıkartılması genel olarak aerodinamik direnci iyileştirici etki göstermektedir. Ancak kamyon gibi kaba cisimlerde yan aynalar akışı yönlendirici bir etki gösterebilmektedir. Nitekim aynasız model sonuçları incelendiğinde de benzer çıktılar alınmıştır. Mevcut A-sütunu tasarımı ile aynaların sökülmesi aracın aerodinamik direncini oldukça yükseltmiştir. Bunun aksine kavisli A-sütunu tasarımına sahip üçüncü kabin modelinde aracın aerodinamik direnci ciddi bir düşüş göstermiştir. Çalışmalar neticesinde araç üzerine parça eklenmesi ya da çıkarılmasının aerodinamik dirence etkisi araç kabinine göre farklılık gösterdiği görülmüştür. Bu nedenle sabit bir kabin tasarımında araç üzerine ilave edilecek parçalar ile sağlanacak aerodinamik faydanın bir sınır vardır. Son olarak üç farklı kabin tasarımında kabinler uzatılarak burunlu kamyon kavramının etkileri incelenmiştir. Kabin uzatma araç etrafındaki akış dağılımını olumlu etkileyerek üç kabinin de aerodinamik direncini azaltmıştır. Üç farklı kabin üzerinde yapılan çalışmalar ile oluşturulan tasarım havuzu incelenmiş ve her bir değişikliğin faydalı etkisini içerek nihai bir model yaratılmıştır. Oluşturulan nihai modelde güneşlik ve yan ayna parçalarına yer verilmemiştir. Buna karşın uzatılmış kabin üzerinde dikleştirilmiş cam ve kavisli A-sütunu bir arada incelenmiştir.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, 2022
Anahtar kelimeler
aerodinamik kuvvet, aerodynamic force, ağır taşıtlar, heavy vehicles, ticari araçlar, commercial vehicles
Alıntı