Dalgakıranlar Üzerindeki Maksimum Tırmanmanın Belirlenmesi
Dalgakıranlar Üzerindeki Maksimum Tırmanmanın Belirlenmesi
Dosyalar
Tarih
2009-09-16
Yazarlar
Erdik, Tarkan
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Günümüzde, dökmetaş korumalı kıyı yapılarının kret seviyesinin belirlenmesinde dalga parametresinin (dalgaların, dalgakıran üzerinde %2’sinin aştığı düşey mesafe) doğru tahmin edilmesi zorunludur. Aksi takdirde, koruma yapıları gereksiz veya yetersiz tasarlanmış olurlar. Bu durum, fazla maliyet veya riskli tasarım anlamına gelmektedir. Pratikte, Van der Meer ve Stam (1992) yaklaşımı kıyı mühendisleri ve araştırmacıları tarafından çokça kullanılmaktadır. Üstelik, bu yöntem konu ile ilgili şartnameler ve proje kriterleri tarafından da önerilmektedir. Fakat, bu çalışmada gösterilmiştir ki Van der Meer ve Stam (1992) yaklaşımı içerisinde belirsizlikler barındırmaktadır. Bu çalışmada, TS bulanık mantık ve Yapay Sinir Ağları yöntemleri kurulmak suretiyle parametresi tahmin edilmiştir. Gerek önerilen TS bulanık mantık gerekse de Yapay Sinir Ağları modelinin regresyon analizlerinin aksine hiçbir ön kabulü gerçekleştirmesi gerekmemektedir. Oysa, Van der Meer ve Stam (1992) modeli regresyon analizlerinin ön kabullerini sağlayamadığından taraflı ve hatalı sonuçlar vermektedir. Her iki yapay zeka modelinde, Van der Meer ve Stam (1992) modelinin aksine kıyı benzerlik parametresine bağlı bir geçiş bölgesi bulunmamaktadır. Grafik gösterimler ve nümerik hata kriterleri neticesinde, her iki yapay zeka modelinin Van der Meer ve Stam (1992) yaklaşımına göre daha gerçekçi sonuç verdiği görülmüştür. TS bulanık mantık modeli iki girdi ile maksimum tırmanmayı hesaplarken, Yapay Sinir Ağları modeli 4 girdi ile sonuç vermektedir. Bu çalışmada ayrıca, kırılmamış ve kırılmış soliter dalgaların tırmanması hususunda fiziksel model deneyleri yapılmıştır. Küp bloklar konulmak suretiyle dalgakıran yüzeyi pürüzlü hale getirilmiştir. Bu durum, literatürde ilk olma özelliği taşımaktadır. Ayrıca, 1:20 batimetri kullanılarak dalgaların kararlı bir şekilde kırılması sağlanmıştır. Küp bloklar tek katman ve çift katman olarak döşenmiştir. Porozitenin ve küp blokların yoğunluğunun tırmanmaya etkisi ayrıca incelenmiştir. Tahmin yeteneği yüksek iki formül, kırılan ve kırılmayan soliter dalga tırmanması için önerilmiştir.
Runup level exceeded by 2% of the incident waves, , is a key parameter in rough rock armored slopes design. Since the relationships between wave runup and wave heigt are complex, vague and uncertain in nature, it is quite difficult to adequately examine wave runup by conventional regressional approaches. In practice, traditional regression-based empirical model, recommended by the ‘‘Coastal Engineering Manual”, “PWDM”, “British Standarts” as well as the ‘‘Manual on the use of rock in hydraulic engineering”, is widely used. However, use of this approach brings additional restrictive assumptions such as linearity, normality (Gaussian distributed variables), variance constancy (homoscedasticity) etc. It is showed in this research that Surf Similarity Parameter data of Van der Meer and Stam do not fit the normal probability plot. Hence, regression-based approach of them cannot be used in prediction. Here, an attempt is made to construct various TS fuzzy and Artificial Neural Network models for predicting the 2% wave runup on rock armored slopes. The developed TS fuzzy model with two inputs namely Structure Permeability and Surf Similarity Parameter yielded the best result out of all constructed models and is proposed in this study. The Artificial Neural Network model with four inputs, five hidden units in hidden layer and one output yields the best result out of all constructed Artificial Neural Network models for testing case. Numerical examples and graphical comparisons demonstrate the capacity of the proposed TS fuzzy and Artificial Neural Network models, which provide coastal engineers with another effective tool. In addition, proposed TS fuzzy and Artificial Neural Network models neither contain any transition region, as in the empirical model depending on Surf Similarity Parameter, nor any mathematical relationship. In addition, a series of physical model experiments are conducted under pre-breaking and post-breaking solitary wave conditions in order to determine maximum wave runup on rough (cube-armored) slopes with a 1:20 foreshore. Cube units are placed in an unconventional single top-layer or double top-layer. The influence of porosity of structure and density of cubes are also studied. A new formula with a high accuracy is suggested by fitting power function to measurement data both for pre-breaking and post-breaking tsunami-type solitary wave regimes.
Runup level exceeded by 2% of the incident waves, , is a key parameter in rough rock armored slopes design. Since the relationships between wave runup and wave heigt are complex, vague and uncertain in nature, it is quite difficult to adequately examine wave runup by conventional regressional approaches. In practice, traditional regression-based empirical model, recommended by the ‘‘Coastal Engineering Manual”, “PWDM”, “British Standarts” as well as the ‘‘Manual on the use of rock in hydraulic engineering”, is widely used. However, use of this approach brings additional restrictive assumptions such as linearity, normality (Gaussian distributed variables), variance constancy (homoscedasticity) etc. It is showed in this research that Surf Similarity Parameter data of Van der Meer and Stam do not fit the normal probability plot. Hence, regression-based approach of them cannot be used in prediction. Here, an attempt is made to construct various TS fuzzy and Artificial Neural Network models for predicting the 2% wave runup on rock armored slopes. The developed TS fuzzy model with two inputs namely Structure Permeability and Surf Similarity Parameter yielded the best result out of all constructed models and is proposed in this study. The Artificial Neural Network model with four inputs, five hidden units in hidden layer and one output yields the best result out of all constructed Artificial Neural Network models for testing case. Numerical examples and graphical comparisons demonstrate the capacity of the proposed TS fuzzy and Artificial Neural Network models, which provide coastal engineers with another effective tool. In addition, proposed TS fuzzy and Artificial Neural Network models neither contain any transition region, as in the empirical model depending on Surf Similarity Parameter, nor any mathematical relationship. In addition, a series of physical model experiments are conducted under pre-breaking and post-breaking solitary wave conditions in order to determine maximum wave runup on rough (cube-armored) slopes with a 1:20 foreshore. Cube units are placed in an unconventional single top-layer or double top-layer. The influence of porosity of structure and density of cubes are also studied. A new formula with a high accuracy is suggested by fitting power function to measurement data both for pre-breaking and post-breaking tsunami-type solitary wave regimes.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2009
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2009
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2009
Anahtar kelimeler
tsunami,
dalgakıran,
tırmanma,
tsunami,
breakwater,
runup