Otononom Mobil Robotlarda Dağılımlı Kalman Filtresi Tabanlı Eş Zamanlı Lokalizasyon Ve Haritalama

dc.contributor.advisor Temeltaş, Hakan tr_TR
dc.contributor.author Paslıoğlu, Kadir tr_TR
dc.contributor.department Mekatronik tr_TR
dc.contributor.department Mechatronics en_US
dc.date 2010 tr_TR
dc.date.accessioned 2010-02-18 tr_TR
dc.date.accessioned 2015-11-06T12:15:24Z
dc.date.available 2015-11-06T12:15:24Z
dc.date.issued 2010-02-25 tr_TR
dc.description Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2010 tr_TR
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2010 en_US
dc.description.abstract Kestirim araçları mobil robotların navigasyonunda kullanılan eş zamanlı haritalama ve navigasyon algroritmalarının tabanını oluşturur. Son yirmi yıldır en iyi bilinen teknik genişletilmiş kalman filtresi tabnalı eş zamanlı haritalama ve lokakizasyon dur. Bunun yanında Parçaçık Filtrenin kullanıldığı FastSLAM teknikleri de gelşitirilmiştir. Parçaçık filteresi yöntemi kendi içinde genişletilmiş kalman filtreleri içerir. Günümüzde ise araştırmalar Dağılımlı Kalman Filtresi tabanlı eş zamanlı lokalizasyon ve haritalama algoritmalarına odaklanmıştır. Kararlı ve doğru haritaların oluşturulması için kulanılan kestirim araçlarınında kararlı olması gerekir. Dağılımlı kalman filtresi tekniğinin geliştirilmesindeki amaç, diğer filtrelerdeki kusurları indirgeyerek bu kararlığı sağlamaktır. Dağılımlı Kalman Filtresi, insansız araçların navigasyonunda en çok kullanılan genişletilmiş kalman filtresinin eksiklerini gidermek amacıyla, alternatif olarak geliştirilmiş bir kestirim aracıdır.Dağılımlı kalman filtrelerinde , Genişletilmiş Kalman Filtresin de bulunan türev alma işlemleri( jacobian, hessian) yoktur. Bu nedenle Genişletilmiş Kalman Filtresi ne göre daha optimal çalışan bir filtredir. Bu tezde dağılımlı kalman filtresi tabanlı eş zamanlı haritalama ve lokalizasyon algoritmaları oluşturulmuştur.Ve bu yöntemin mobil robotların navigasyon uygulamalarındaki uyumluluğunu görmek amaçlanmıştır. Sigma noktalı filtreler ailesinden olan Dağılımlı kalman filtresi incelenmiştir ve diğer bir kestirim yöntemi olan Genişletilmiş Kalman Filtresi ile karşılaştırılmıştır. Simulasyon çalışmalarımız, bilgisayar ortamında MATLAB programı kullanılarak yapılmıştır. Deneysel çalışmalarımız ise laboratuvarımızda kurulmuş olan insansız kara araçları üzerinde yapılmıştır. Çeşitli yörüngeler ve değişik işaretçi nesne sayıları ile testler yapılmıştır. tr_TR
dc.description.abstract Estimation methods are base elements for simultaneous localization and mapping algorithms used for monile robot navigation. simultaneous localization and mapping with extended kalman filters has been best known method for last twenty years.Beside these method FastSLAM using particle filters techniques are developed too. Particle filters include extenden kalman filters in itself. Nowadays, researches focused on simultaneous localization and mapping algorithms with unscented kalman filters. For constructing stationary and reliable maps, used estimation tools must be consistent.The purpose for developin unscented kalman filter is to overcome some flaws in other estimation methods and make that consistency.. Unscented Kalman Filter, is an alternative estimation method to mostly used extended kalman filters to deal with its flaws, in unmanned vehicles navigation. In unscented kalman filter, there is no need to calculate jacobian or hessians like EKF. Beacuse of that it works more optimal then EKF. Uncented Kalman filters based simultaneous localization and mapping algorithms are developed in this thesis. And compatibility of this method in mobile robot navigation implementations is observed. Unscneted Kalman Filter from the family of sigma point kalman filters is examined. Simulation works is done by using MATLab program. We did the experimental works in our laboratory with previously made unmanned vehicles. Several test are made with different trajectories and different landmark numbers. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.description.degree M.Sc. en_US
dc.identifier.uri http://hdl.handle.net/11527/10047
dc.publisher Fen Bilimleri Enstitüsü tr_TR
dc.publisher Institute of Science and Technology en_US
dc.rights İTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights İTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject Harita Oluşturma tr_TR
dc.subject Lokalizasyon tr_TR
dc.subject Kalman Filtresi tr_TR
dc.subject Dağılımlı Kalman Filtresi tr_TR
dc.subject Map Building en_US
dc.subject Localization en_US
dc.subject Kalman Filter en_US
dc.subject Unscented Kalman Filter en_US
dc.title Otononom Mobil Robotlarda Dağılımlı Kalman Filtresi Tabanlı Eş Zamanlı Lokalizasyon Ve Haritalama tr_TR
dc.title.alternative Unscented Kalman Filter Based Simultaneous Localizatoin And Mapping In Autonomous Mobile Robots en_US
dc.type Master Thesis en_US
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
10174.pdf
Boyut:
3.25 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.14 KB
Format:
Plain Text
Açıklama