Recovery of rare earth elements from waste and wastewater

thumbnail.default.alt
Tarih
2021-12-14
Yazarlar
Yüksekdağ, Ayşe
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Graduate School
Özet
REEs is a group of elements comprising Lanthanides, Scandium, and Yttrium. These elements are used in many alloys, permanent magnets, wind turbines, defense industry products, magnetic resonance imaging systems, catalytic converters, mobile phones, computers, and so on. Due to their unique physical and chemical properties, these elements contribute to the development of many technological products due to their efficiency, size reduction, energy reduction, and superior chemical and physical stability. REEs are classified as LREEs (La, Ce, Pr, Nd, Pm, Sm) and HREEs (Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) according to their arrangement in the periodic table. Another classification method is based on the criticality of these elements and is as follows: Critical REEs (Nd, Eu, Tb, Dy, Er, Y), uncritical REEs (La, Pr, Sm, Gd), and excess REEs (Ce, Ho, Tm, Yb, Lu). These elements are also called "vitamins of modern industry" due to their unique properties. In the first stage of the thesis, a comprehensive literature review was prepared. Recovery of REEs and scandium from secondary sources under a circular economy framework was reviewed with a holistic approach. Moreover, the latest statistical data and studies have been summarized. 46 million tons of red mud was generated in the first four months of 2021 worldwide. In 2018, 750 million tons of thermal power plant fly ash were released in European Union member countries. Globally, over 53 million of e-waste was generated in 2019. These and many other types of waste need appropriate management, as they are large in quantity. On the other hand, they are valuable secondary resources due to their critical element content. Within the scope of the second chapter of the thesis, a total of 32 different samples containing (1) combustion residues, (2) mine wastes, (3) treatment sludges & sediments, (4) e-waste, and (5) various water, wastewater, and geothermal water were investigated. Then, REEs, scandium, and other critical, precious, and base element potentials were exhibited. According to the results obtained, Ce, La, Nd, and Y elements were found the most in the secondary sources obtained from Turkey, respectively. The highest total REEs concentration was found in thermal power plant fly ash and e-waste mixture. The waste with the highest content of critical rare earth elements was e-waste. For this reason, e-waste was chosen for recovery studies. In the third stage of the thesis, e-waste was crushed, ground, and sieved, respectively, and separated into size fractions. The effects of the particle size of the waste, the type of acid used, and the waste:acid ratio on the leaching of REEs were investigated. It was seen that the highest leaching efficiency was obtained from the smallest grain size. However, it was observed that the leaching efficiency decreased as the amount of e-waste used per unit volume of acid increased. The highest yield was obtained with aqua regia and the lowest waste:acid (5 mg/mL acid) ratio. In the fourth step, which is the last experimental part of the thesis, the separation of rare earth elements by membrane applications from e-waste leachate, prepared with nitric acid, was optimized using response surface methodology. In the first stage, e-waste leachate was pre-treated and concentrated in the nanofiltration process. This stage was optimized as a pretreatment pH of 1.5 and an NF operating pressure of 14.5 bar. In the second stage, the pre-treated leachate was fed directly to the supported liquid membrane process, which is a kind of membrane solvent extraction. Finally, the optimization studies were repeated by feeding the NF concentrated phase to the supported liquid membrane. Optimum operating conditions were found to be the same as for direct membrane solvent extraction (pH: 1.5 and D2EHPA concentration: 15%). An increase in the separation efficiency of HREEs and a decrease in the separation of LREEs were observed in the case of MSX with pre-concentration. In sum, HREEs could be separated with higher purity by applying NF concentration before membrane solvent extraction.
Açıklama
Thesis(Ph.D.) -- Istanbul Technical University, Graduate School, 2022
Anahtar kelimeler
wastewater, atık su, rare earth elements, nadir toprak elementleri
Alıntı