Farklı Karşılıklı Bilgi Kestirim Yöntemleri Kullanarak Öznitelik Seçimi

dc.contributor.advisor Çataltepe, Zehra tr_TR
dc.contributor.author Kule, Ahmet Kenan tr_TR
dc.contributor.department Bilgisayar Mühendisliği tr_TR
dc.contributor.department Computer Engineering en_US
dc.date 2010 tr_TR
dc.date.accessioned 2010-11-29 tr_TR
dc.date.accessioned 2015-04-07T13:59:35Z
dc.date.available 2015-04-07T13:59:35Z
dc.date.issued 2010-11-30 tr_TR
dc.description Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2010 tr_TR
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2010 en_US
dc.description.abstract Bu çalışmada, farklı karşılıklı bilgi kestirim yöntemlerinin öznitelik seçimi üzerindeki etkisi incelenmiş, minimum-bolluk-maksimum-ilgi (mRMR) ve karşılıklı bilgi filtresi öznitelik seçim yöntemleri, bölümlemeden daha gelişmiş kestirim yöntemleri olan çekirdek yoğunluk kestirimi (KDE) bazlı ve k en yakın komşu (KNN) bazlı yöntemler kullanılarak iyileştirilmeye çalışılmıştır. Ayrıca bu karşılıklı bilgi kestirim yöntemlerinin yapay ve gerçek veriler üzerindeki başarımı ölçülmüş ve yöntemlerin başarımı altküme seçimi ve birleştirme yolları ile arttırılmaya çalışılmıştır. Altküme seçimi ve birleştirme yöntemlerinin başarımı arttırmadığı, k en yakın komşu bazlı kestirim yönteminin karşılıklı bilgi filtresi için kullanıldığında bölümlemeden daha yüksek başarım sağladığı, fakat mRMR’ın bundan yararlanamadığı görülmüştür. tr_TR
dc.description.abstract In this study, effect of different mutual information estimation methods on feature selection is examined, minimum-redundancy-maximum-relevance and mutual information filter feature selection methods are tried to be improved by using more advanced mutual information estimation methods than binning like k-nearest-neighbour (KNN) based and kernel density estimation (KDE) based methods. Besides, performances of these mutual information estimation methods on artificial and real data are measured and this performance is tried to be improved by subset selection and combination. It is concluded that subset selection and combination does not improve performance, KNN based estimation method improves performance when used in mutual information filter but mRMR does not benefit from this. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.description.degree M.Sc. en_US
dc.identifier.uri http://hdl.handle.net/11527/377
dc.publisher Fen Bilimleri Enstitüsü tr_TR
dc.publisher Institute of Science and Technology en_US
dc.rights İTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights İTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject Öznitelik seçimi tr_TR
dc.subject Karşılıklı bilgi kestirimi tr_TR
dc.subject Feature Selection en_US
dc.subject Mutual information estimation en_US
dc.title Farklı Karşılıklı Bilgi Kestirim Yöntemleri Kullanarak Öznitelik Seçimi tr_TR
dc.title.alternative Feature Selection Using Different Mutual Information Estimation Methods en_US
dc.type Master Thesis en_US
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
11156.pdf
Boyut:
1.12 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.14 KB
Format:
Plain Text
Açıklama