Functional safety for heavy-duty transmissions

dc.contributor.advisor Üstoğlu, İlker
dc.contributor.author Bozdağ, Konuralp Tevfik
dc.contributor.authorID 504191117
dc.contributor.department Control and Automation Engineering
dc.date.accessioned 2024-06-10T07:12:36Z
dc.date.available 2024-06-10T07:12:36Z
dc.date.issued 2022-09-22
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Graduate School, 2022
dc.description.abstract The number of electrical and electronic equipment and software used in vehicles is increasing day by day. Apart from passive safety precautions for these hardware and software used, now active precautions are also taken. While the seat belt was a passive safety measure in the first years when vehicles became a necessity for the society, many software and hardware measures are now taken for the safety of the driver and passengers. Thanks to the autonomous transportation, the driver's place in transportation is decreasing, while his safety and security are gaining more and more importance. A system or piece of hardware must operate appropriately in accordance with the system's inputs in order for functional safety to be a component of the overall safety framework. To put it another way, functional safety refers to the capacity to recognize potentially dangerous circumstances and to trigger a protective or corrective device or mechanism to stop the development of hazardous events or to lessen their potential effects. The only means for the driver to act in an emergency while driving an automobile is to press the brake pedal. However, thanks to the software created thanks to functional safety, accidents can be prevented by intervening to the vehicle faster than the driver in an unexpected situation. Electrical, electronic, and programmable electronic everything is determined within the framework of certain rules and steps, functional safety analyzes and safety levels within the purpose of the IEC 61508 standard. Functional safety is included in the ISO 26262 standard group, being customized for the automotive sector. The ISO 26262 standard series describe how software and hardware for an automotive should be developed in certain road conditions and accident situations. In this thesis, the subject of functional safety will be examined in the automatic transmission system used in heavy vehicles. Today, due to globalization and the increase in consumer needs, logistics and transportation sectors gain more importance. Transportation is of great importance in these sectors and heavy vehicles have a large share in this sector. Trucks, trucks, etc., for both the safety of people and the transportation of products without any damage. It is important that vehicles are safe and secure. Among the working subjects of the automotive industry, the transmission software and designs of heavy-duty vehicles have an important value. The heavy-duty transmission to be analyzed is an automated manual transmission, with 16 forward and 4 reverse gears. Gear shifts are not only with synchromesh, but also by using 3-stage actuators, more combinations are created with less gears, and a lighter transmission is designed than expected. However, functional safety becomes more important in heavy-duty vehicles that have more hardware and software in terms of software and hardware. Because, in heavy-duty vehicles, the gearbox not only provides regular and desired torque transmission, but also fulfills different duties depending on the service type. Therefore, safety analyzes and created scenarios are investigated in more detail. In this research, firstly, the safety analysis of the heavy-duty vehicle was carried out according to the ISO 26262 standard group. In order to make a more detailed examination as the system where the safety analysis will be made, the system limits have been determined as automatic transmission and actuators. Then, the problems that may arise in the vehicle and transmission are considered and it is determined what kind of dangers may occur. Considering these hazards, hazard and risk analysis has been made for specific scenarios. What kind of safety goals should be taken against the hazards that may arise because of the hazard and risk analysis and how long it should take are defined in the functional safety concept. The analysis made was examined in detail and the safety requirements were established for the transmission software. The safety targets and requirements that emerged as a result of the safety analyzes were tested in the simulation environment. By means of model-based software, a dynamic model of the heavy-duty vehicle is created, and simple transmission algorithms are demonstrated. By creating virtual hazards and scenarios in Matlab & Simulink environment, vehicle models with and without functional safety software are compared.
dc.description.degree M.Sc.
dc.identifier.uri http://hdl.handle.net/11527/24926
dc.language.iso en_US
dc.publisher Graduate School
dc.sdg.type Goal 9: Industry, Innovation and Infrastructure
dc.subject algorithm modelling
dc.subject algoritma modelleme
dc.subject mechanical power transmission elements
dc.subject mekanik güç iletim elemanları
dc.subject model control
dc.subject model kontrolü
dc.title Functional safety for heavy-duty transmissions
dc.title.alternative Ağır hizmet araçlarında otomatik şanzımanları için fonksiyonel emniyet çalışmaları
dc.type Master Thesis
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
504191117.pdf
Boyut:
2.56 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
1.58 KB
Format:
Item-specific license agreed upon to submission
Açıklama