Bir Nükleer Reaktörde Yapay Sinir Ağları Yardımıyla Durum Değişkenlerinin Kestirilmesi 

dc.contributor.advisor Geçkinli, Melih tr_TR
dc.contributor.author Köksal, Bektaş Ali tr_TR
dc.contributor.authorID 46307 tr_TR
dc.contributor.department Nükleer Araştırmalar tr_TR
dc.contributor.department Nuclear Studies en_US
dc.date 1995 tr_TR
dc.date.accessioned 2018-12-18T13:49:43Z
dc.date.available 2018-12-18T13:49:43Z
dc.date.issued 1995-01-16 tr_TR
dc.description Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Enerji Enstitüsü, 1995 tr_TR
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Energy Institute, 1995 en_US
dc.description.abstract Sinir ağı uygulamaları ya da alışıla gelen ismi ile Yapay Sinir Ağları birbirleri ile çok yoğun bir şekilde bağlantılandırılmış basit hesaplama birimlerinden oluşurlar. Yapay sinir mimarisi yapacağı göreve göre seçilir. Genelde nöronlar "LEGO" modülleri gibi eklenerek daha büyük yapılar oluştururlar. Paralel ve dağılmış işlemci yapısı sinir ağlarına "spread sheet" gibi bir özellik kazandırır.Sinir ağları statik örüntü tanımada, fonksiyon kestiriminde, sistem dinamiği benzeşiminde, içerik adresli bellek oluşturmada, istatistik gruplamada kullanılabilirler.Uygulama olarak, el yazısı okuma ve seslendirme, proses kontrolü, optik algılama, konuşma algılama, finans mühendisliğinde borsa trendi belirleme gibi, doğrudan nümerik yöntemlerle çözümlenmesi zor olan veya algoritması bilinmeyen popüler problemler gösterilebilir.Bellek kapasiteleri geniş olan ağlar verilen örnek problemleri öğrenip genellemek yerine ezberlemek yoluna gidebilirler. Bu durumun olup olmadığını anlamak için egğitim esnasında yeni test problemleri ile sistemin performansı sürekli olarak sınanır. tr_TR
dc.description.abstract In a nuclear reactor the instantaneous estimate of hidden state variables, which might be exploited for control purposes, is a difficult task most of the time. For the estimation to be dependable, the past dynamical behavior of the system need to be laiown from the given initial state on. In practice, for a rough estimation, without compromising critical safety issues, one can just do with data for a short period of time prior to the demand. From another point of view, there may exist a number of unknown correlations or functional relationships between the observable and unobservable state variables under the imposed operating procedures. Such correlations are hard to establish analytically by conventional methods, yet artificial neural networks can be trained with the help of some analytical models so that they can learn to estimate the state in a real situation. For this purpose, we investigated the performance of multilayer feed forward networks trainable via back propogation algorithm. A successfully trained network is expected to estimate the state with a reasonable accuracy at a short glance of the pattern of variation of the observable state variables. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.description.degree M.Sc. en_US
dc.identifier.uri http://hdl.handle.net/11527/17428
dc.language tur tr_TR
dc.publisher Enerji Enstitüsü tr_TR
dc.publisher Energy Institute en_US
dc.rights Kurumsal arşive yüklenen tüm eserler telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights All works uploaded to the institutional repository are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject Nükleer enerji tr_TR
dc.subject Nükleer reaktörler tr_TR
dc.subject Yapay sinir ağları tr_TR
dc.subject Nuclear energy en_US
dc.subject Nuclear reactors en_US
dc.subject Artificial neural networks en_US
dc.title Bir Nükleer Reaktörde Yapay Sinir Ağları Yardımıyla Durum Değişkenlerinin Kestirilmesi  tr_TR
dc.title.alternative State Estimation İn A Nuclear Reactor With The Help Of Artificial Neural Networks en_US
dc.type masterThesis en_US
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
46307.pdf
Boyut:
2.14 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.14 KB
Format:
Plain Text
Açıklama