Miniature electrical propulsion system design for cube satellites

thumbnail.default.alt
Tarih
2022-08-11
Yazarlar
Çatal, Egemen
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Graduate School
Özet
Cube satellites, also known as cubesats, are compact spacecraft that are made up from 10x10x10cm sized cubes. Each one of these cubes are named units or U for short. Based on mission requirements the size of the cubesat can range from 1U to 27Us. Ever since their establishment in 1999 they have been used for academic and educational purposes. Advancements in the miniature electronic now enables these cubesats to perform at a higher grade and be used for commercial and scientific missions. Their compact nature make them affordable and easy to access. This compactness also means that the power and mass budget is very limited compared to the bigger satellite classes. Thanks to these restraints very few cubesats with propulsion systems have been launched into space to date. A propulsion system has the potential to provide greater missions envelope, extended lifespan, precise control for close formation flying and space debris reduction. Propulsion systems are grouped under two main categories as chemical and electric propulsion systems. Compared to the electrical propulsion systems chemical systems provide greater thrust at the cost of reduced efficiency. Since greater efficiency is vital due to compact nature of the cubesat, electric propulsion systems constitute a tempting solution as a propulsion systems. Among them, RF ion thrusters are viable candidates due to their scalability and simple design. Ion thrusters provide greatest propellant consumption efficiency among electric propulsion systems which makes them very preferable. This study presents the design of an RF ion thruster fit to be used in a cubesat. Theoretical knowledge and calculations are presented and the system is calculated to provide 550 µN of maximum thrust and up to 3000 s of specific imoulse. Design and experimental details are provided and based on these designs the actual model of the thruster is manufactured. Manufactured model was then tested at the Space Technologies Laboratory of Bogazici University (BUSTLab). During the tests it was observed that the ions are successfully accelerated and thrust is generated. Measurements of actual thrust levels and ion beam characteristics are left as future work.
Açıklama
Thesis (M.Sc.) -- İstanbul Technical University, Graduate School, 2022
Anahtar kelimeler
cube satellites, küp uydular, artificial satellies, yapay uydular
Alıntı