An ale approach for the numerical simulation of insect flight

dc.contributor.advisor Şahin, Mehmet
dc.contributor.author Süsler, Belkıs Erzincanlı
dc.contributor.authorID 1003070 tr_TR
dc.contributor.department Uçak ve Uzay Mühendisliği tr_TR
dc.contributor.department Aerospace Engineering en_US
dc.date 2014 tr_TR
dc.date.accessioned 2014-03-17 tr_TR
dc.date.accessioned 2015-06-10T12:53:54Z
dc.date.available 2015-06-10T12:53:54Z
dc.date.issued 2014-03-27 tr_TR
dc.description Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014 tr_TR
dc.description Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2014 en_US
dc.description.abstract Bu çalışmada öncelikle büyük ölçekli (large-scale) hareketli yüzey problemlerinin tamamen birleşmiş (fully coupled) formda çözülmesi için kenar merkezli yapısal olmayan sonlu hacimler yöntemine dayalı Arbitrary Lagrangian-Eulerian (ALE) yöntemi geliştirilmiştir. Kenar merkezli sonlu hacim metoduna dayanan bu sayısal yöntemde hız vektör bileşenleri her bir elemanın yüzeylerinin orta noktasında tanımlanırken, basınç değerleri her bir elemanın merkezinde tanımlanmaktadır. Basınç ve hız değerlerinin mevcut şekilde düzenlenmesi kararlı bir sayısal şemaya yol açar ve böylece basınç noktalarının birbirleriyle etkileşmesi (pressure coupling) için ayrıca doğal olmayan bir değişikliğe ihtiyaç kalmaz. Süreklilik denklemi her bir eleman içerisinde tam olarak sağlanmakta ve bu süreklilik denklemlerinin toplamı hesaplama bölgesinin sınırlarında tanımlanan küresel süreklilik denklemini vermektedir. Geometrik korunum kanununun (GCL) ayrık biçimde (discrete formda) sağlanması için özel bir özen gösterilmiştir. Ağ deformasyonu her bir zaman adımında direkt olmayan radyal bazlı fonksiyon interpolasyonun çözülmesi ile elde edilmiş ve bu tekrar ağ oluşumunu gerektirmediğinden sayısal yöntemin performansını artırmıştır. Küçük zaman adımlı zamana bağlı akışların çözümü için projeksiyon metodunda olduğu gibi oluşan cebirsel denklemler üç ayrı matrise ayrıklaştırılmış ve bu matrislerin tersi önkoşullandırıcı olarak kullanılmıştır. Burada oluşan ayrık ölçekli Laplacian operatörünün tersi yerine iki adım HYPRE BoomerAMG önkoşullandırıcısı kullanılmıştır. Paralel önkoşullandırılmış iteratif yöntemlerin verimini artırmak için PETSc ve HYPRE kütüphanelerinden yararlanılmıştır. Hareketli ağlar üzerinde şu testler yapılmıştır: Azalan Taylor-Green Girdap akışı, kanal içindeki salınım hareketi yapan silindir etrafındaki akış, yere paralel salınım hareketi yapan küp içerisindeki küre etrafındaki akış. tr_TR
dc.description.abstract An arbitrary Lagrangian-Eulerian (ALE) approach has been developed in order to investigate the near wake structure of Drosophila flight. The numerical algorithm is based on side-centered finite volume method where the velocity vector components are defined at the mid-point of each cell face while the pressure is defined at the element centroid. The present arrangement of the primitive variables leads to a stable numerical scheme and it does not require any ad-hoc modifications in order to enhance pressure coupling. A special attention is also given to to satisfy the discrete global conservation law. An efficient and robust mesh-deformation algorithm based on the indirect radial basis function method is developed at each time level in order to enhance numerical robustness. For the algebraic solution of the resulting large-scale equations, a matrix factorization is introduced similar to that of the projection method for the whole coupled system and we use two-cycle of BoomerAMG solver for the scaled discrete Laplacian provided by the HYPRE library, which we access through the PETSc library. The present numerical algorithm is initially validated for the decaying Taylor-Green vortex flow, the flow past an oscillating circular cylinder in a channel and the flow induced by an oscillating sphere in a cubic cavity. Then the numerical method is applied to the numerical simulation of flow field around a pair of flapping Drosophila wings in hover flight. Finally, the numerical calculations with different wing kinematics are carried out to simulate the flow field around a pair of flapping Drosophila wings in hover. en_US
dc.description.degree Doktora en_US
dc.description.degree PhD tr_TR
dc.identifier.uri http://hdl.handle.net/11527/4722
dc.publisher Fen Bilimleri Enstitüsü tr_TR
dc.publisher Institute of Science and Technology en_US
dc.rights İTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights İTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject ALE tr_TR
dc.subject böcek uçuşu tr_TR
dc.subject sonlu hacimler yöntemi tr_TR
dc.subject ALE en_US
dc.subject insect flight en_US
dc.subject finite volume method en_US
dc.title An ale approach for the numerical simulation of insect flight en_US
dc.title.alternative Böcek uçuşunun ale yaklaşımı ile sayısal simülasyonu tr_TR
dc.type Doctoral Thesis en_US
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
14429.pdf
Boyut:
83.12 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.16 KB
Format:
Plain Text
Açıklama