Sistein / Sistin Mühendisliğinin Candıda Methylıca Format Dehidrogenazının Termostabilitesine Etkisi
Sistein / Sistin Mühendisliğinin Candıda Methylıca Format Dehidrogenazının Termostabilitesine Etkisi
Dosyalar
Tarih
Yazarlar
Doluca, Osman
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Endüstriyel NAD(P)H rejenerasyonu için aday proteinlerden Format Dehidrogenaz sıkça çalışılmaktadır. Birçok avantajına rağmen, termostabilite açısından henüz yeterli bulunmamaktadır. Termostabilite kazandırmak için var olan farklı metodlardan, Pseudomonas sp. 101 esas alınarak oluşturulmuş homoloji modellemesi seçilerek uygulanmıştır. Bu modelleme ile candida methylica FDH’inde sülfür köprüleri oluşturulmamış iki sistein amino asidi tespit edilmiştir. Farklı hidrofobik ceplerde bulunan sisteinlerin yüksek sıcaklıklarda okside olabileceği tespit edilmiştir. Termostabilitenin arttırılması için kullanılan ilk yöntemde sisteinler C23V ve C262V mutasyonlarıyla valin amino asidi ile değiştirilmesi planlanmıştır. İkinci yaklaşımda ise bu sisteinlerle bağ oluşturabilecek şekilde I239C ve A153C mutasyonları tasarlanmıştır. Bu mutasyonlar sonucunda sülfür köprülerinin oluşturulması ile entalpi açısından bir değişim olmaksızın katlanmamış halin entropisini düşürerek stabiliteyi arttırması planlanmıştır. Bu çalışmada pQE-2 ekspresyon vektörüne yerleştirilmiş cmFDH geni Invitrogen Gene TailorTM site-directed mutagenesis sistem ile mutasyona uğratılmıştır. Kinetik ve Termostabilite deneyleri gerçekleştirilerek %50 benzerlik gösteren psFDH’e dayalı homoloji modelleme ile elde edilmiş bilginin sistein/sistin mühendisliği için yeterli olmadığı gösterilmiştir.
Formate dehydrogenases (FDH) have been widely studied as a candidate for industrial NAD(P)H regeneration. Despite of its distinctive advantages, the limitation in the thermostability of the enzyme stays as an important problem. There are different approches to increase the thermostabilty of the enzymes, here we apply protein engineering based on homology modelling using Pseudomonas sp. 101 FDH which has %50 similarity. The wild type FDH from candida methylica does not contain disulphide bridges, but does possess two cysteine residues buried in seperate hydrophobic pockets. Cysteine residues are particulary susceptible to atmospheric oxidation at elevated temperatures. One approach to increase thermostability is to replace both cysteine resides by valine, C23V and C262V. The second approach will be to stabilize via engineering disulphide bridges into the protein: I239C (to partner C262) and A153C (to partner C23 in the other subunit). If a disulphide bridge can be engineered into the native fold without introducing an enthalpic cost (strain), such a bridge would stabilise the native state by decreasing the entropy of the protein’s unfolded state. In this study, we summarize our mutations that have been introduced into cmFDH gene in 6xHis-tag pQE-2 expression vector by using Invitrogen Gene TailorTM site-directed mutagenesis system. Kinetic and thermostability studies were performed following the production of both wild type and mutant FDHs. Results have shown that Cystein/Cystine engineering require more structural information for homology modelling based studies.
Formate dehydrogenases (FDH) have been widely studied as a candidate for industrial NAD(P)H regeneration. Despite of its distinctive advantages, the limitation in the thermostability of the enzyme stays as an important problem. There are different approches to increase the thermostabilty of the enzymes, here we apply protein engineering based on homology modelling using Pseudomonas sp. 101 FDH which has %50 similarity. The wild type FDH from candida methylica does not contain disulphide bridges, but does possess two cysteine residues buried in seperate hydrophobic pockets. Cysteine residues are particulary susceptible to atmospheric oxidation at elevated temperatures. One approach to increase thermostability is to replace both cysteine resides by valine, C23V and C262V. The second approach will be to stabilize via engineering disulphide bridges into the protein: I239C (to partner C262) and A153C (to partner C23 in the other subunit). If a disulphide bridge can be engineered into the native fold without introducing an enthalpic cost (strain), such a bridge would stabilise the native state by decreasing the entropy of the protein’s unfolded state. In this study, we summarize our mutations that have been introduced into cmFDH gene in 6xHis-tag pQE-2 expression vector by using Invitrogen Gene TailorTM site-directed mutagenesis system. Kinetic and thermostability studies were performed following the production of both wild type and mutant FDHs. Results have shown that Cystein/Cystine engineering require more structural information for homology modelling based studies.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008
Anahtar kelimeler
sistein sistin mühendisliği,
format dehidrogenaz,
homoloji modelleme,
termostabilite,
cystein cystine Engineering,
formate dehydrogenase,
homology modelling,
thermostability