Üç Boyutlu Çelik Çerçevelerin Üç Bileşenli Deprem Yükleri Etkisinde Göçme Mekanizmaları Ve Sünekliğinin Belirlenmesi
Yükleniyor...
Dosyalar
Tarih
item.page.authors
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Bu çalışmada üç boyutlu çerçeve sistemlerin üç bileşenli deprem yükleri altındaki göçme mekanizmalarının ve süneklik kapasitelerinin belirlenmesi için bir algoritmanın geliştirilmesi ve bu algoritmaya uygun dinamik analiz yapabilen bir bilgisayar programının üretilmesi amaçlanmıştır. Doktora tezinin birinci bölümünde, yapılmak istenen çalışmaya ait genel tanımlamalar verilmiş ve çalışmada gözönüne alınacak etkenler kısaca anlatılmıştır. Ayrıca, bu konuyla ilgili olarak önceden yapılmış olan çalışmaların literatür araştırması ve açıklamaları sunulmuştur. İkinci bölümde, lineer elastik sistem çözümüne ait tanımlamalar verilmiştir. Eleman rijit matrisinin lokal ve global eksen takımlarındaki yazılışı ile global eksen takımlarında yazılan eleman rijitlik matrislerinden sistem rijitlik matrisinin nasıl oluşturulması gerektiği anlatılmıştır. Lineer denklem sisteminin çözümünde, gauss indirgemesine dayanan “Geliştirilmiş CROUT indirgemesi” yöntemi kullanılmıştır. Üçüncü bölümde, yarı-rijit birleşim modeli tanımlanmıştır. Tekrarlı yükler altındaki birleşimin davranışını tanımlayabilmek için Kishi ve Chen tarafından önerilen bağımsız pekleşme modeli (independent hardening model) kullanılmıştır. Bu modele ait; birleşim başlangıç rijitliği, maksimum moment taşıma kapasitesi ve şekil parametresi değerleri, Üst ve Alt Flanşlar ile Gövdeden Çift Korniyerli birleşim tipi için hesaplanmıştır. Dördüncü bölümde, malzeme açısından nonlineerlik incelenmiştir. Malzemenin lineer olmayan gerilme-şekil değiştirme bağıntısı, Ramberg-Osgood ifadesinin tersine karşı gelen bağıntı ile modellenmiştir. Sistem zamana bağlı değişken dış yüklerin etkisinde olduğu için, plastik mafsallarda eleman uç momenti-açısal uç deplasmanı ile eksenel uç kuvveti-eksenel uç deplasmanı arasındaki bağıntılara ait iskelet ve dal eğrileri kullanılarak histerik davranış tanımlanmıştır. Sonlu küçük uç kuvvet artımları ile uç deplasman artımları arasındaki lineer olmayan bağıntılardan elasto-plastik düzeltme katsayıları tanımlanarak elemanın elasto-plastik tanjant rijitlik matrisi oluşturulmuştur. Karşılıklı etki yüzeyi, Morris ve Fenves tarafından verilen, eleman enkesitindeki tarafsız eksenin herbir konumu için belirlenmiş olan alt-sınır akma yüzeyi ifadeleriyle tanımlanmıştır. Beşinci bölümde, üç boyutlu çerçeve sistem elemanlarındaki ikinci mertebe etkiler incelenmiştir. Eleman uç noktalarının farklı yer değiştirmesi sonucu oluşan ikinci mertebe etkiler ( etkisi) geometrik rijitlik matrisiyle, eleman uzunluğu boyunca elemanda oluşan ikinci mertebe etkiler ( etkisi) ise stabilite fonksiyonlarıyla tanımlanmıştır. Altıncı bölümde, çok katlı sistemlerin sonlu küçük zaman artımları için hareket denklemleri oluşturulmuş ve bu denklemleri oluşturan kütle, sönüm ve tanjant rijitlik matrisleri ile dinamik dış yüklere ait yükleme matrisleri tanımlanmıştır. Hareket denklemleri sonlu küçük zaman artımları için Newmark’ın genelleştirilmiş ivme yöntemi uygulanarak adım-adım integre edilerek çözülmüştür. Yedinci bölümde, sisteme giren enerji, sistemde depolanan enerji ve sistemde harcanan enerji bağıntıları tanımlanmıştır. Sekizinci bölümde, sistemin elasto-plastik davranışını elemanların süneklik oranları ile ifade edebilen, üç boyutlu elemanlara uygun ve histerik davranışları içerecek şekilde süneklik tanımlamaları yapılmıştır. Dokuzuncu bölümde; tek açıklıklı ve tek katlı, tek açıklıklı ve iki katlı, tek açıklıklı ve sekiz katlı, üç açıklıklı ve yirmi katlı ile üç açıklıklı ve otuz katlı uzay çerçeve sistemleri, önceki bölümlerde anlatılanları içerecek şekilde geliştirilen algoritmaya uygun olarak yazılmış bilgisayar programı kullanılarak üç boyutlu deprem yükleri altında analiz edilmiş ve elde edilen sonuçlar grafikler ve tablolar ile gösterilmiştir. Yapılan analizlerden elde edilen tüm sonuçlar üzerindeki değerlendirmeler ve tartışmalar son bölümde ifade edilmiştir.
In this study, it has been aimed to develop an algorithm that determines failure mechanisms and ductility capacities of 3D frames under earthquake loads with three components and a computer program which performs dynamic analysis according to this algorithm. In the first chapter, the general descriptions relating to this study have been presented and factors taken into account in the study have been described briefly. Moreover, the previous researches about this subject and literature survey has been given. In the second chapter, definitions concerning linear elastic system solution have been described. The member stiffness matrix has been explained which is written both in the local and the global coordinate systems. Then, the system’s global stiffness matrix has been given with how it is formed by using the global stiffness matrix of each member. Modified Crout reduction procedure which is a kind of Gauss elimination method has been used for solution of linear equation systems. In the third chapter, semi-rigid connection model has been described. The independent hardening model given by Kishi and Chen has been used to express the behaviour under cyclic loading. Because this model is simple to use and easily applicable to all type of steel frames connection models, it is often implemented in the frame analysis program. The moment-rotation curve under the first cycle of loading, unloading and reverse loading remain unchanged under the repetition of loading cycles. The skeleton curve used in the model was obtained from three parameter power model. In this procedure, the initial connection stiffness, ultimate moment capacity and shape parameter of the connection have been determined by an analytical model for top- and seat-angle connection with double web angle. In the fourth chapter, material nonlinearity has been investigated. The inelastic moment-rotation and axial force-deformation behaviour of structural members have been modeled by the inversion of the Ramberg-Osgood relation. Material nonlinearity is simulated by the formation of plastic zones of zero length at the ends of the elements. The plastic hinge does not form until all of the fibers in the cross-section reach the yield stress. Hysteresis behaviour of plastic hinges have been defined using skeleton and branch curves relating to moment-rotation and axial force-deformation relations of members. Elasto-plastic correction factors have been obtained from finite incremental nonlinear member force-deformation relations and then, the member’s tangent stiffness matrix has been formed by using these factors. Interaction surfaces have been described with the lower bound yield surface equations suggested by Morris and Fenves, relating to the various neutral axis positions of common cross-sectional types. Because direct shear deformations are usually neglected as being small for framed structures, direct shear forces parameters are not included in the yield conditions formulated. In the fifth chapter, the geometric nonlinearity including the second-order effects associated with and has been investigated. While the geometric nonlinearity caused by axial force has been described by the use of the geometric stiffness matrix, the nonlinearity caused by the interaction between the axial force and bending moment has been also described by the use of the stability functions. In the sixth chapter, dynamic equation of motion has been builted in the finite time increments for multi-story systems and the system mass, damping and tangent stiffness matrices which is a part of the system dynamic equation of motion have been described. El Centro acceleration record with three components has been applied to the dynamic equation of motion as external load. This equation of motion has been solved by Newmark’s constant acceleration method in time history domain and system response parameters have been calculated and checked in every time step. In the seventh chapter, the input energy in the system due to seismic loading, dissipated energy by the hysteretic behaviour of the material at the location of plastic hinges, if they form, by viscous damping and by hysteretic behaviour of the semi-rigid connections, elastic strain energy and kinetic energy have been described. In the eighth chapter, member-level ductility descriptions including hysteretic behaviour of three dimensional members, and system-level ductility description have been presented briefly. In the ninth chapter, using the written computer program which uses the developed algorithm, different structural models have been analyzed under ground motions with three components and the response quantities of structural models have been calculated. These resulting responses have been illustrated in figures graphically. The opinions and the discussions relating to the general results of all analyses and calculations have been expressed in the last chapter.
In this study, it has been aimed to develop an algorithm that determines failure mechanisms and ductility capacities of 3D frames under earthquake loads with three components and a computer program which performs dynamic analysis according to this algorithm. In the first chapter, the general descriptions relating to this study have been presented and factors taken into account in the study have been described briefly. Moreover, the previous researches about this subject and literature survey has been given. In the second chapter, definitions concerning linear elastic system solution have been described. The member stiffness matrix has been explained which is written both in the local and the global coordinate systems. Then, the system’s global stiffness matrix has been given with how it is formed by using the global stiffness matrix of each member. Modified Crout reduction procedure which is a kind of Gauss elimination method has been used for solution of linear equation systems. In the third chapter, semi-rigid connection model has been described. The independent hardening model given by Kishi and Chen has been used to express the behaviour under cyclic loading. Because this model is simple to use and easily applicable to all type of steel frames connection models, it is often implemented in the frame analysis program. The moment-rotation curve under the first cycle of loading, unloading and reverse loading remain unchanged under the repetition of loading cycles. The skeleton curve used in the model was obtained from three parameter power model. In this procedure, the initial connection stiffness, ultimate moment capacity and shape parameter of the connection have been determined by an analytical model for top- and seat-angle connection with double web angle. In the fourth chapter, material nonlinearity has been investigated. The inelastic moment-rotation and axial force-deformation behaviour of structural members have been modeled by the inversion of the Ramberg-Osgood relation. Material nonlinearity is simulated by the formation of plastic zones of zero length at the ends of the elements. The plastic hinge does not form until all of the fibers in the cross-section reach the yield stress. Hysteresis behaviour of plastic hinges have been defined using skeleton and branch curves relating to moment-rotation and axial force-deformation relations of members. Elasto-plastic correction factors have been obtained from finite incremental nonlinear member force-deformation relations and then, the member’s tangent stiffness matrix has been formed by using these factors. Interaction surfaces have been described with the lower bound yield surface equations suggested by Morris and Fenves, relating to the various neutral axis positions of common cross-sectional types. Because direct shear deformations are usually neglected as being small for framed structures, direct shear forces parameters are not included in the yield conditions formulated. In the fifth chapter, the geometric nonlinearity including the second-order effects associated with and has been investigated. While the geometric nonlinearity caused by axial force has been described by the use of the geometric stiffness matrix, the nonlinearity caused by the interaction between the axial force and bending moment has been also described by the use of the stability functions. In the sixth chapter, dynamic equation of motion has been builted in the finite time increments for multi-story systems and the system mass, damping and tangent stiffness matrices which is a part of the system dynamic equation of motion have been described. El Centro acceleration record with three components has been applied to the dynamic equation of motion as external load. This equation of motion has been solved by Newmark’s constant acceleration method in time history domain and system response parameters have been calculated and checked in every time step. In the seventh chapter, the input energy in the system due to seismic loading, dissipated energy by the hysteretic behaviour of the material at the location of plastic hinges, if they form, by viscous damping and by hysteretic behaviour of the semi-rigid connections, elastic strain energy and kinetic energy have been described. In the eighth chapter, member-level ductility descriptions including hysteretic behaviour of three dimensional members, and system-level ductility description have been presented briefly. In the ninth chapter, using the written computer program which uses the developed algorithm, different structural models have been analyzed under ground motions with three components and the response quantities of structural models have been calculated. These resulting responses have been illustrated in figures graphically. The opinions and the discussions relating to the general results of all analyses and calculations have been expressed in the last chapter.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2006
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2006
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2006
Konusu
Ramberg-Osgood bağıntısı, Bağımsız pekleşme modeli, Stabilite fonksiyonları, Göçme mekanizması, Süneklik gereksinimleri, Ramberg-Osgood equation, Independent hardening model, Stability functions, Failure mechanisms, Ductility demands
