Kot yıkama tesisi atıksularının biyolojik arıtabilirliği ve modellenmesi
Kot yıkama tesisi atıksularının biyolojik arıtabilirliği ve modellenmesi
Dosyalar
Tarih
1997
Yazarlar
İnsel, H. Güçlü
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Evsel ve endüstriyel atıksular için tasarlanan biyolojik arıtma sistemleri gün geçtikçe yaygınlaşmaktadır. Biyolojik arıtma dizaynında sistemin seçimi, ilk yatıran maliyeti, projelendirme ve işletmede büyük önem taşımaktadır. Son zamanlarda yürütülen çalışmalarda aktif çamurun davranışı çok bileşenli modeller yardımıyla açıklanmaktadır. Bu çalışmada jean (kot pantolon) yıkama yapan bir tesis sırasıyla atıksu karakterizasyonu, biyolojik arıtılabilirlik ve modelleme çalışmaları kapsamında incelenmiştir. Birinci bölümde çalışmanın önemi, amaç ve kapsamı belirtilmiştir. İkinci bölümde Türkiye' de ve yurt dışında tekstil endüstrisi altkategorileri belirtilmiş ve bu alt kategorilerin atıksu kaynaklan ve genel atıksu karakterizasyonu verilmiştir. Üçüncü bölümde incelenen tesisin özellikleri ve atıksu kaynaklan incelenmiş ve tesis ile ilgili detaylı bilgiler verilmiştir. Dördüncü bölümde arıtılabilirlik bazlı atıksu karakterizasyonu, KOİ bileşenleri ve model yaklaşımının yanında proses-kinetiği de açıklanmıştır. Beşinci bölümde incelenen atıksuyun KOİ bileşenleri ve model parametrelerinin belirlenmesine yönelik yöntemler açıklanmıştır. Altıncı bölümde uygulanacak deneysel yaklaşım ve deneysel program ele alınmış ve kullanılacak düzenek açıklanmıştır. Yedinci bölümde, ilk olarak tekil ve kompozit atıksu karakterizasyonu incelenmiştir. Çalışmanın ikinci aşamasında KOI bileşenlerinin yanında modelleme çalışması ile kinetik ve stokiometrik katsayılar saptanmıştır. Sekizinci bölümde, sonuç ve öneriler sunulmuştur.
Textile industry has a great importance for both industrialized and developing countries. Due to the complexity of its nature and the large variety of chemicals used in different operations, it is difficult to define a typical wastewater. Therefore, pollution based subcategorization plays an important role in pollution prevention activities concerning the textile mills. In the first part of the study, subcategorization approaches have been compared with each other and the variability of textile industry subcategories were evaluated in terms of wastewater generation and characterization. In the second part of the study, three different wastewaters originating from Denim Processing (Stone Wash) - a branch of textile industry - were evaluated with respect to the wastewater flowrate, wastewater characteristics and biological treatability. In the characterization study, experiments were "conducted on the grab samples whereas treatability studies were performed on composit samples obtained from the industry. Within the scope of the study, kinetic and stoichiometric parameters (Ph, bn, Yh) and COD fractions ( involving soluble and particulate biodegredable, Ss, Sh, Xs soluble and particulate non-biodegredable Si, Xr forms) were determined by applying lab- scale experiments to the composit wastewater samples taken from three different types of denim processes. Investigated processes have different water usages and chemical consumptions. The detailed process profiles are given in the third section. From a modelling point of view, stoichiometric parameters such as half saturation constant Ks, half saturation hydrolysis rate Kx, maximum hydrolysis coefficient, k^ which cannot be estimated by experimental procedures, were assessed by curve fitting on Oxygen Utilization Rate (OUR) profiles. Results obtained from the experiments and modelling studies are given below.. Determination of Readily Biodegredable COD, SSo The method of determination of readily biodegredable substrate (Sso) depends upon the observation of OUR profile. OUR profile may be experimentally managed to stay approximately constant during the consumption of Ss and drops to a second plateau when Ss is completely depleted. The readily biodegredable substrate concentration can be calculated from the area under the OUR curve. From the figure 1, AOi reflects the utilization rate when the maximum growth rate is sustained. The readily biodegredable substrate, Ss can be calculated from the equation, xu Sso = AOl (Vml + Vw) 1-Yh where AOi : mass of oxygen consumed by Ss Vw: volume of wastewater in the mixture (L3) Vmi: volume of mixed liquor in the mixture (L3) I I I I I I Time (minute) Figure 1 Determination of Ss with OUR profile. Determination of the endogenous respiration rate, bH The method of determining bH depends upon digesting the biomass in an aerated batch reactor and measuring OUR values, periodically. After plotting the change of OUR values with time, Dh can be calculated from the slope (Figure 2). In OUR = In [ 1.42 (I-^.Dh.Xh ] - ba-t a J3 Figure 2 Determination of bn. Determination of maximum specific growth rate, pH The maximum specific growth rate, fb can be determined by means of respirometric measurements at an appropriate F/M ratio. The method which is developed by KAPPELER and GUJER (1992), relies on seeding wastewater with a small amount of xm biomass in an aerobic reactor. From the linearized form of the expression, Ph-dh can be determined as,, OUR,, x lnOUR7=(pH-bH)t The OUR profile that belongs to Plant 1 is given in Figure 3. I 100 200 Time(miimte) 300 Figure 3 Determination of Ph-dh. The Heterotrophic Yield Coefficient, YH During the OUR assesment of the readily biodegredable substrate determination, soluble COD analysis were performed on filtrate samples. It is assumed that electron acceptor consumption was conducted on readily biodegredable substrate. In this way, YH is calculated with the use of following expression, Yh = 1- AO1 + AO2 ACOD(sol.) H h 20 40 60 Time(nsnute) Figure 4 Determination of Yh xiv . Determination of Soluble Inert COD, Si The soluble inert COD,Si is determined by the procedure proposed by GERMÎRLÎ et al,(1991). The method depends on the measurement of soluble COD of two aerobic reactors (glucose and wastewater reactor) seeded with the same amount of biomass acclimated to the glucose and wastewater mixture. After observing the soluble COD, the values reach to a plateau after a period of time. The soluble inert fraction can be calculated from the difference between the COD values of the wastewater and glucose reactors at plateau period (Figure 4). Filtrate A - Glucose Figure 5 Determination of soluble inert COD, Si. Determination of Slowly Biodegredable COD Fractions, Sho» Xso Slowly biodegredable organic fractions, Sho, Xso of total COD are determined from mass balance. This fraction can be calculated from, and Cso - Sso + Xso Sto = Sso + Sio + Sho where Cso : Total COD (mg/1) Sto : Total Soluble COD (mg/1) Sho : Rapidly Hydrolyzable COD (mg/1) Xso : Slowly Hydrolyzable COD (mg/1) Sio : Soluble Inert COD (mg/1) In the modelling approach, slowly biodegredable COD is not differentiated as rapidly and slowly biodegredable COD fractions. Stoichiometric parameters such as Ks, Kx, kj, are determined by curve fitting. Results of characterization of wastewater originated from 3 different stone wash processes are given in Table 1 and Table 2. The COD fractionation, kinetic and stoichiometric coefficients of these 3 processes are shown in Table 3 and Table 4. xv 00. «si S" °5 "Sı ü g» S VO O O o «o en o 3 f O. fî ı-ff 0* 8 4, 3.31 oo i en ov en Ov en en vo en es en es O.o vo O OV XVI Table 3 COD fractions of Wastewaters * assumed * assumed For the purpose of comparison it is necessary to mention about the domestic wastewaters. Range of kinetic and stoichiometric coefficient associated with domestic wastewaters are as follows, maximum specific growth rate pa, 2.7-6.5/day, half saturation constant Ks, 2.5-30 mg/1, half saturation hydrolysis constant Kx, 0.01-0.8 mgCOD/mgCOD, hydrolysis rate constant kh, 1-5/day. The kinetic and stoichiometric coefficients assessed in this study for denim processing wastewaters, are in accordance with the above mentioned coefficients obtained from domestic wastewaters. xvu BÖLÜM I GİRİŞ 1.1 ÇALIŞMANIN ANLAM VE ÖNEMİ Sanayi devriminden günümüze gelene kadar, endüstri dallarının hızla gelişmesi sonucu çevre kirliliği büyük boyutlara ulaşmıştır. Ülkelerin, çevre bilincinden yoksun kalkınma çabalan ve plansız endüstriyel yapılanma geri dönülmesi mümkün olmayan sonuçlar ortaya çıkarmaktadır, özellikle sanayi: bölgelerinden kaynaklanan suların toplanarak arıtılmadan su ortamına verilmesi ekolojik dengeyi bozmaktadır. Ülkemizde de endüstrilerin denetimsiz ve düzensiz faaliyet göstermeleri su kaynaklarımızı gün geçtikçe kullanılmaz hale getirmektedir. Ancak, son zamanlarda, çevre bilincinin kazanılmaya başlaması ve bununla ilgili yapılan çalışmalar, kirlenmiş su kaynaklanmızm iyileştirilmesine yönelik olumlu bir adımdır. Su kaynaklarının kirlenmesini engellemek için, evsel ve endüstriyel auksu arıtım sistemlerinin doğru olarak tasarlanması ve işletilmesi gerekmektedir. Tekstil endüstrisi teknik gelişmeleri ve iş imkanları yönünden Türkiye ekonomisinde önemli bir yer tutmaktadır. Ayrıca tekstil endüstrisi toplam endüstriyel üretimin %13 ünü oluşturmaktadır. Teknolojinin gelişmesiyle tekstil endüstrisinde su kullanımı ve aüksu karakterinin değişimi kaçınılmazdır. Bu değişime paralel olarak uygun arıtma alternatiflerinin belirlenmesinde, endüstri tanımının yanında auksu özelliklerinin bilinmesi büyük önem taşır. Eskiden beri uygulanan ampirik esaslı tasarım, biyolojik arıtma tesisinin yetersiz olması veya gerektiğinden büyük boyutlandırma durumuna neden olmaktaydı. Uygulanan bu amprik yaklaşımlar, günümüzde yerini, aktif çamurun karakterini belirten ve yüksek
Textile industry has a great importance for both industrialized and developing countries. Due to the complexity of its nature and the large variety of chemicals used in different operations, it is difficult to define a typical wastewater. Therefore, pollution based subcategorization plays an important role in pollution prevention activities concerning the textile mills. In the first part of the study, subcategorization approaches have been compared with each other and the variability of textile industry subcategories were evaluated in terms of wastewater generation and characterization. In the second part of the study, three different wastewaters originating from Denim Processing (Stone Wash) - a branch of textile industry - were evaluated with respect to the wastewater flowrate, wastewater characteristics and biological treatability. In the characterization study, experiments were "conducted on the grab samples whereas treatability studies were performed on composit samples obtained from the industry. Within the scope of the study, kinetic and stoichiometric parameters (Ph, bn, Yh) and COD fractions ( involving soluble and particulate biodegredable, Ss, Sh, Xs soluble and particulate non-biodegredable Si, Xr forms) were determined by applying lab- scale experiments to the composit wastewater samples taken from three different types of denim processes. Investigated processes have different water usages and chemical consumptions. The detailed process profiles are given in the third section. From a modelling point of view, stoichiometric parameters such as half saturation constant Ks, half saturation hydrolysis rate Kx, maximum hydrolysis coefficient, k^ which cannot be estimated by experimental procedures, were assessed by curve fitting on Oxygen Utilization Rate (OUR) profiles. Results obtained from the experiments and modelling studies are given below.. Determination of Readily Biodegredable COD, SSo The method of determination of readily biodegredable substrate (Sso) depends upon the observation of OUR profile. OUR profile may be experimentally managed to stay approximately constant during the consumption of Ss and drops to a second plateau when Ss is completely depleted. The readily biodegredable substrate concentration can be calculated from the area under the OUR curve. From the figure 1, AOi reflects the utilization rate when the maximum growth rate is sustained. The readily biodegredable substrate, Ss can be calculated from the equation, xu Sso = AOl (Vml + Vw) 1-Yh where AOi : mass of oxygen consumed by Ss Vw: volume of wastewater in the mixture (L3) Vmi: volume of mixed liquor in the mixture (L3) I I I I I I Time (minute) Figure 1 Determination of Ss with OUR profile. Determination of the endogenous respiration rate, bH The method of determining bH depends upon digesting the biomass in an aerated batch reactor and measuring OUR values, periodically. After plotting the change of OUR values with time, Dh can be calculated from the slope (Figure 2). In OUR = In [ 1.42 (I-^.Dh.Xh ] - ba-t a J3 Figure 2 Determination of bn. Determination of maximum specific growth rate, pH The maximum specific growth rate, fb can be determined by means of respirometric measurements at an appropriate F/M ratio. The method which is developed by KAPPELER and GUJER (1992), relies on seeding wastewater with a small amount of xm biomass in an aerobic reactor. From the linearized form of the expression, Ph-dh can be determined as,, OUR,, x lnOUR7=(pH-bH)t The OUR profile that belongs to Plant 1 is given in Figure 3. I 100 200 Time(miimte) 300 Figure 3 Determination of Ph-dh. The Heterotrophic Yield Coefficient, YH During the OUR assesment of the readily biodegredable substrate determination, soluble COD analysis were performed on filtrate samples. It is assumed that electron acceptor consumption was conducted on readily biodegredable substrate. In this way, YH is calculated with the use of following expression, Yh = 1- AO1 + AO2 ACOD(sol.) H h 20 40 60 Time(nsnute) Figure 4 Determination of Yh xiv . Determination of Soluble Inert COD, Si The soluble inert COD,Si is determined by the procedure proposed by GERMÎRLÎ et al,(1991). The method depends on the measurement of soluble COD of two aerobic reactors (glucose and wastewater reactor) seeded with the same amount of biomass acclimated to the glucose and wastewater mixture. After observing the soluble COD, the values reach to a plateau after a period of time. The soluble inert fraction can be calculated from the difference between the COD values of the wastewater and glucose reactors at plateau period (Figure 4). Filtrate A - Glucose Figure 5 Determination of soluble inert COD, Si. Determination of Slowly Biodegredable COD Fractions, Sho» Xso Slowly biodegredable organic fractions, Sho, Xso of total COD are determined from mass balance. This fraction can be calculated from, and Cso - Sso + Xso Sto = Sso + Sio + Sho where Cso : Total COD (mg/1) Sto : Total Soluble COD (mg/1) Sho : Rapidly Hydrolyzable COD (mg/1) Xso : Slowly Hydrolyzable COD (mg/1) Sio : Soluble Inert COD (mg/1) In the modelling approach, slowly biodegredable COD is not differentiated as rapidly and slowly biodegredable COD fractions. Stoichiometric parameters such as Ks, Kx, kj, are determined by curve fitting. Results of characterization of wastewater originated from 3 different stone wash processes are given in Table 1 and Table 2. The COD fractionation, kinetic and stoichiometric coefficients of these 3 processes are shown in Table 3 and Table 4. xv 00. «si S" °5 "Sı ü g» S VO O O o «o en o 3 f O. fî ı-ff 0* 8 4, 3.31 oo i en ov en Ov en en vo en es en es O.o vo O OV XVI Table 3 COD fractions of Wastewaters * assumed * assumed For the purpose of comparison it is necessary to mention about the domestic wastewaters. Range of kinetic and stoichiometric coefficient associated with domestic wastewaters are as follows, maximum specific growth rate pa, 2.7-6.5/day, half saturation constant Ks, 2.5-30 mg/1, half saturation hydrolysis constant Kx, 0.01-0.8 mgCOD/mgCOD, hydrolysis rate constant kh, 1-5/day. The kinetic and stoichiometric coefficients assessed in this study for denim processing wastewaters, are in accordance with the above mentioned coefficients obtained from domestic wastewaters. xvu BÖLÜM I GİRİŞ 1.1 ÇALIŞMANIN ANLAM VE ÖNEMİ Sanayi devriminden günümüze gelene kadar, endüstri dallarının hızla gelişmesi sonucu çevre kirliliği büyük boyutlara ulaşmıştır. Ülkelerin, çevre bilincinden yoksun kalkınma çabalan ve plansız endüstriyel yapılanma geri dönülmesi mümkün olmayan sonuçlar ortaya çıkarmaktadır, özellikle sanayi: bölgelerinden kaynaklanan suların toplanarak arıtılmadan su ortamına verilmesi ekolojik dengeyi bozmaktadır. Ülkemizde de endüstrilerin denetimsiz ve düzensiz faaliyet göstermeleri su kaynaklarımızı gün geçtikçe kullanılmaz hale getirmektedir. Ancak, son zamanlarda, çevre bilincinin kazanılmaya başlaması ve bununla ilgili yapılan çalışmalar, kirlenmiş su kaynaklanmızm iyileştirilmesine yönelik olumlu bir adımdır. Su kaynaklarının kirlenmesini engellemek için, evsel ve endüstriyel auksu arıtım sistemlerinin doğru olarak tasarlanması ve işletilmesi gerekmektedir. Tekstil endüstrisi teknik gelişmeleri ve iş imkanları yönünden Türkiye ekonomisinde önemli bir yer tutmaktadır. Ayrıca tekstil endüstrisi toplam endüstriyel üretimin %13 ünü oluşturmaktadır. Teknolojinin gelişmesiyle tekstil endüstrisinde su kullanımı ve aüksu karakterinin değişimi kaçınılmazdır. Bu değişime paralel olarak uygun arıtma alternatiflerinin belirlenmesinde, endüstri tanımının yanında auksu özelliklerinin bilinmesi büyük önem taşır. Eskiden beri uygulanan ampirik esaslı tasarım, biyolojik arıtma tesisinin yetersiz olması veya gerektiğinden büyük boyutlandırma durumuna neden olmaktaydı. Uygulanan bu amprik yaklaşımlar, günümüzde yerini, aktif çamurun karakterini belirten ve yüksek
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 1997
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 1997
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 1997
Anahtar kelimeler
Aktif çamur,
Atık su,
Biyolojik arıtma,
Kot,
Activated sludge,
Waste water,
Biological treatment,
Denim