Çoklu Koşullu Rassal Alanlar Kullanarak Türkçe Biçimbilimsel Belirsizlik Giderme

dc.contributor.advisorAdalı, Eşreftr_TR
dc.contributor.authorEhsani, Raziehtr_TR
dc.contributor.authorID460003tr_TR
dc.contributor.departmentBilgisayar Mühendisliğitr_TR
dc.contributor.departmentComputer Engineeringen_US
dc.date2013tr_TR
dc.date.accessioned2013-02-08tr_TR
dc.date.accessioned2015-04-07T13:59:40Z
dc.date.available2015-04-07T13:59:40Z
dc.date.issued2013-02-18tr_TR
dc.descriptionTez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2013tr_TR
dc.descriptionThesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2013en_US
dc.description.abstractBu çalışma Türkçenin biçimbilimsel belirsizlik gidermesi sorunu ile uğraşır. Bu sorunu istatistiksel makine öğrenme yöntemi ile ele alar. Kullandığı istatistiksel yöntem ise koşullu rassal alanlardır.tr_TR
dc.description.abstractThis thesis presents the results of main part-of-speech tagging and full morphological disambiguation of Turkish sentences using multiple Conditional Random Fields (CRFs). Although CRFs are applied to many different languages for part-of-speech (POS) tagging, Turkish poses interesting challenges to be modeled with them. The challenges include issues related to the statistical model of the problem as well as issues related to computational complexity and scaling. In this paper, we propose a novel model for main-POS tagging in Turkish. Furthermore, we pro- pose some approaches to reduce the computational complexity and allow better scaling characteristics or improve the performance without increased complexity. These approaches are discussed with respect to their advantages and disadvantages. We show that the best approach is competitive with the current state of the art in accuracy and also in training and test durations. The good results obtained imply a good first step towards full morphological disambiguation.en_US
dc.description.degreeYüksek Lisanstr_TR
dc.description.degreeM.Sc.en_US
dc.identifier.urihttp://hdl.handle.net/11527/410
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.publisherInstitute of Science and Technologyen_US
dc.rightsİTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır.tr_TR
dc.rightsİTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.en_US
dc.subjectkoşullu rassal alanlartr_TR
dc.subjectTürkçetr_TR
dc.subjectbiçimbilimseltr_TR
dc.subjectbelirsizliktr_TR
dc.subjectconditional random fieldsen_US
dc.subjecthidden markov modelsen_US
dc.subjectmorphological disambiguationen_US
dc.subjectTurkishen_US
dc.titleÇoklu Koşullu Rassal Alanlar Kullanarak Türkçe Biçimbilimsel Belirsizlik Gidermetr_TR
dc.title.alternativeTurkish Morphological Disambiguation Using Conditional Random Fieldsen_US
dc.typeMaster Thesisen_US

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
13283.pdf
Boyut:
672.74 KB
Format:
Adobe Portable Document Format

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
license.txt
Boyut:
3.14 KB
Format:
Plain Text
Açıklama