Zamandan Bağımsız Ve Zamana Bağlı Nötron Transport Denkleminin Sayısal Çözümleri İçin Süreksiz Sonlu Elemanlar Yöntemleri

dc.contributor.advisor Özgener, Atilla tr_TR
dc.contributor.author Mercimek, Mehmet tr_TR
dc.contributor.authorID 444188 tr_TR
dc.contributor.department Enerji Bilim Ve Teknoloji tr_TR
dc.contributor.department Energy Sciences and Technologies en_US
dc.date 2014 tr_TR
dc.date.accessioned 2017-01-27T12:23:43Z
dc.date.available 2017-01-27T12:23:43Z
dc.description Tez (Doktora) -- İstanbul Teknik Üniversitesi, Enerji Enstitüsü, 2014 tr_TR
dc.description Thesis (Ph.D.) -- İstanbul Technical University, Energy Institute, 2014 en_US
dc.description.abstract Bu çalışmada, zamandan bağımsız ve zamana bağlı nötron transport denklemini küresel geometride sayısal olarak çözmek için uzaysal farklamada kullanılmak üzere doğrusal ve kuadratik süreksiz Galerkin sonlu elemanlar yöntemi geliştirilmiştir. Bunların yanında uzaysal farklamada elmas farklaması ve başka bir doğrusal süreksiz sonlu elemanlar yöntemi kullanılmıştır. Bu yöntemlerin türetimi yapılmış ve dört farklı uzaysal ayrıklaştırma yöntemi ile iki farklı zaman ayrıklaştırması yöntemi kullanılarak bilgisayar programları geliştirilmiştir. Zaman farklaması olarak kapalı ve elmas farklaması, yönsel ayrıklaştırma yöntemi olarak ayrık ordinatlar yöntemi kullanılmıştır. Yazılan programlar analitik çözümü bilinen zamandan bağımsız ve zamana bağlı farklı tip test problemleri ile doğrulanmış ve yöntemler karşılaştırılmıştır. Zamandan bağımsız problemlerde kuadratik süreksiz sonlu elemanlar yöntemi aynı nokta sayısı ile karşılaştırma yapıldığında etkin çoğaltma katsayısını diğer yöntemlere oranla daha doğru hesaplayabilmiş, ayrıca hesaplama yükü olarak bakıldığında daha kısa sürede daha hatasız sonuçlar üreterek iyi bir performans göstermiştir. Zamana bağlı problemlerde sekiz ayrı yöntem arasından uzaysal farklamada kuadratik süreksiz sonlu elemanlar yöntemi, zaman farklamasında ise elmas farklaması kullanıldığında daha doğru sonuçlar elde edilmiştir. Bu yöntemlerin hesaplamada kullandığı iç ve dış iterasyonların hızlandırılmasında kaba ızgara yeniden dengeleme hızlandırma yöntemi kullanılmış ve performansı test edilmiştir. Özellikle zamana bağlı problemler için bu hızlandırma yöntemi geliştirilmiş ve özgün olarak geliştirilen iki süreksiz sonlu elemanlar yönteminin hesaplama performansı arttırılmıştır. Sonuç olarak bu yöntemin uygun problemlerde ve kaba ızgara başına ince ızgara sayısının uygun seçildiği durumlarda etkili bir hızlandırma yaptığı gösterilmiştir. tr_TR
dc.description.abstract In this study new Galerkin type linear and quadratic discontinuous finite element methods have been developed as spatial discretization methods for the numerical solution of time-independent and time-dependent neutron transport equation in spherical geometry. In addition to these methods, diamond difference method and another linear discontinuous finite element method are used as spatial discretization methods. Discontinuous finite element formulations have been derived and computer codes have been developed based on these formulations. In time-dependent neutron transport, implicit and diamond difference methods are used. Discrete ordinates method is used as angular differencing of transport equation. Computer codes are validated using different type of benchmark problems. Also methods are compared with the result of these benchmarks. As a result, quadratic discontinuous finite element method is appeared to be the best method for the accurate calculation of effective multiplication factor in time independent problems, if equal number of points is used in the methods. It is found that computational cost of the quadratic method is lower than the other methods since it takes shorter time in the calculations than the other methods to achieve same accuracy. In time dependent problems, quadratic discontinuous-diamond differencing combination is the more accurate method. In the acceleration of both inner and outer iterations of these methods, coarse mesh rebalance method is developed and its performance is tested. As a result, it is found that this method accelerates iterations effectively in appropriate problems and if the number of fine mesh cells in each coarse mesh is properly chosen. en_US
dc.description.degree Doktora tr_TR
dc.description.degree Ph.D. en_US
dc.identifier.uri http://hdl.handle.net/11527/12901
dc.publisher Enerji Enstitüsü tr_TR
dc.publisher Energy Institute en_US
dc.rights İTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights İTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject Nükleer Mühendislik tr_TR
dc.subject Kesikli ordinatlar yöntemi tr_TR
dc.subject Nötron transport denklemi tr_TR
dc.subject Nuclear Engineering en_US
dc.subject Discrete ordinate method en_US
dc.subject Neutron transport equation en_US
dc.title Zamandan Bağımsız Ve Zamana Bağlı Nötron Transport Denkleminin Sayısal Çözümleri İçin Süreksiz Sonlu Elemanlar Yöntemleri tr_TR
dc.title.alternative Discontinuous Finite Element Methods For The Numerical Solution Of Time Independent And Time Dependent Neutron Transport Equation en_US
dc.type Doctoral Thesis en_US
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
301082003.pdf
Boyut:
3.9 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.16 KB
Format:
Plain Text
Açıklama