Balıkesir-balya Bölgesindeki Asit Maden Drenajının Moleküler Biyoloji Teknikleri İle Biyojeokimyasal Ve Mikrobiyolojik Özelliklerin İncelenmesi
Balıkesir-balya Bölgesindeki Asit Maden Drenajının Moleküler Biyoloji Teknikleri İle Biyojeokimyasal Ve Mikrobiyolojik Özelliklerin İncelenmesi
Dosyalar
Tarih
2011-02-24
Yazarlar
Vardar, Nurcan
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Yüzey ve/veya yeraltı madencilik işlemleri sırasında, sülfürlü cevher ve kömürün içerisinde dingin durumdaki kükürt, kaya parçalanıp ufalandığından atmosferik oksijen ve su ile tepkime olanağı bularak oksitlenmeye başlar. Bu oksidasyon sonucunda, yüksek sülfat, metal ve düşük pH’lı (<3) asit maden suları/sahaları (AMS) oluşur. Düşük pH’lı bu asidik sular, kaya parçalarındaki ağır metallerin (Cd,Co, Pb, As, Zn) çözülmesini tetikler. Dünyada en yaygın çevre problemlerinden bir olan AMS’nin en karakteristik özelliği yüksek metal ve mineralojik içeriğe (galen, sfalerit, pirit) sahip olmasıdır. Yüksek metal içerikli bu sular, burada yetişen bitkilerin tüm gıda döngüsü için toksik olması gibi bir çok açıdan ekolojik yaşamı etkiler. Mikroorganizmalar sülfürlü cevherlerin oksitlenmesinde ana rol oynarlar. Bu mikroorganizmaların içinde en yaygın ve önemlilerinden biri Acidithiobacillus türüdür. Acidithiobacillus bakterisi moleküler oksijen ve Fe(III) iyonunu elektron alıcı olarak kullanarak sülfür minerallerini oksitlerler. Bu reaksiyonlar sırasında bakteri katalizör görevi üstlenerek, reaksiyonların hızla gelişmesine neden olur. Bu nedenle, herhangi bir bölgedeki pirit, galen ve sfalerit gibi sülfür minerallerin oksidasyon mekanizmasının anlaşılması ve açıklanması için mikrobiyal reaksiyonların dikkate alınması gerekir. Burada sunulan araştırmanın esas amacı, terk edilmiş Pb-Zn maden bölgesindeki mikrobiyal kompozisyonun belirlenmesi ve jeokimyasal reaksiyonlardaki etkisinin incelenmesidir. Hedefimiz için laboratuar ve arazi çalışmaları yapılmıştır. Laboratuar çalışmaları için, arazi şartlarına benzeyen birçok değişik şartlarda (pH (2/4), sıcaklık (4-25°C)) galen, sfalerit ve piriti kullanarak biyolojik ve kontrol oksidasyon deneyleri dizayn ettik. Biyolojik deneyler, asidofilik sülfür okside eden Acidithiobacillus thiooxidans (14887) bakterisi kullanılarak yürütülmüştür. Bakterilerin sülfür mineral oksidasyon oranındaki etkisini anlamak amacıyla kimyasal kontrol deneyleri bakteri kültürünün ilave edilmeden biyolojik deneylere benzeyen şartlarda yapılmıştır. Değişik atık kayalardaki sediment ve su örnekleri ağustos 2010’daki arazi çalışmasında toplanmıştır. Su örneklerinin (geçici atık havuzları ve dere) kimyasal özellikleri (pH, sıcaklık, Eh, EC) arazide taşınabilir cihaz (WTW) ile belirlenmiştir. Sedimentlerde ve suda yüksek konsantrasyonlarda Pb, Zn, Cu, Fe, Co, As ve Cd tespit edilmiştir. Maden atık sahasındaki bakteri populasyonunu belirlemek için sediment ve su örnekleri ile 16S rRNA gen sekans analizi yapılmıştır. 25°C’de galen ve sfalerit ile yapılan laboratuar oksidasyon denemeleri kimyasal kontrol deneylerine nazaran A.thiooxidans bakterisi ile yüksek oksidasyon oranı göstermiştir. Uygun sıcaklığın altındaki (4, 10°C) deneyler, galen ve sfalerit oksidasyon oranının 25°C’ye nazaran çok daha az olmasına rağmen, A.thiooxidans bakterisinin 4°C’nin altında hala aktif olduğunu gösterir. Galen ve sfaleritin aksine piritin kayda değer biyolojik ve kimyasal oksidasyonu görülmemiştir. Sekans analizlerimiz Balya Pb-Zn atıklarında sülfür-Fe(II) okside eden ve Fe(III) indirgeyen bakteriler yaygın olmak üzere yüksek bakteri çeşitliliğinin olduğunu göstermiştir. Sekanslama ve jeokimyasal analizlerimiz sülfür oksidasyonun çoğunlukla kompleks mikrobiyal reaksiyonlarla gerçekleştirildiğini ve atıklardaki ikincil mineral oluşumunun sülfür okside eden bakterilerle yapıldığını ileri sürmüştür.
Sulfur, which is stable in ore and coal, starts to oxidize when exposed to atmospheric oxygen and water during surface and ground mining activities. As a result of these oxidation processes, acid mine drainage (AMD) which has high sulfate, metals and low pH water form. The acidity in turn can promote solubilization of heavy metals such as copper, zinc, nickel, cobalt and arsenic from the rocks. The most important characteristics of AMD known as the most common environmental problem related to mining activities is its high metal concentrations . These waters with high metal content affect ecological life in many different aspects such as plant growing in these waters can be toxic to whole food cycle. Microorganisms play a major role in oxidation of sulfur ores. The most common and important microorganism is Acidithiobacillus species. Acidithiobacillus can oxidize sulfur minerals utilizing molecular oxygen and Fe(III) as a electron acceptor. In these reactions bacteria act as catalyst and cause the reactions proceed faster, as a result, formation of AMD is largely controlled by bacterial reactions. Therefore, understanding and elucidating oxidation mechanisms of sulfide minerals such as galena, sphalerite and pyrite in any region need to take microbial reactions into account. The main goal of the research was to investigate microbial community composition of abandoned Pb-Zn mine and their influences on geochemical reactions in the region. For our goal, we used laboratory and field approaches. For laboratory studies, we designed biological and abiotic oxidation experiments with galena, sphalerite and pyrite under various conditions (pH (2-4), temperature (4-25oC)) which mimics the field conditions. The biological experiments were conducted by using the acidophilic sulfur oxidizing bacteria, Acidithiobacillus thiooxidans bacterium (14887). Chemical control experiments were carried out under identical conditions as the biological experiments except addition of the bacterial culture to determine the role of bacteria on sulfur mineral oxidation rate. Sediment and water samples from the various waste rocks were collected during the field excursion in August 2010. Chemical properties (pH, temperature, Eh, EC) of the water samples (temporary tailing pools and the creek) were determined in the field using portable instrument (WTW). High concentration of Pb, Zn, Cu, Fe, Co, As and Cd in sediments and water were determined. 16S rRNA gene sequence analysis was performed in the sediment and water samples for identification of bacterial population in the mine tailing area. Laboratory oxidation experiments with galena and sphalerite at 25oC showed high oxidation rate with A. thioxidans compared to chemical control experiments. Experiments under suboptimal temperature (4, 10oC) indicated that A. thioxidans was still active even under 4oC although the oxidation rate of galena and sphalerite were significantly lower compared to 25oC. Unlike galena and sphalerite, oxidation of pyrite with bacteria and without bacteria did not show significant reaction rate. Our sequence analysis indicated high bacterial diversity in the Balya Pb-Zn tailings, most prevalent sulfur -Fe(II) oxidizer along with Fe(III) reducer bacterium. Our sequence and geochemical analysis suggest that sulfur oxidation is mostly mediated by complex microbial reactions by sulfur –oxidizer bacterium in the tailings.
Sulfur, which is stable in ore and coal, starts to oxidize when exposed to atmospheric oxygen and water during surface and ground mining activities. As a result of these oxidation processes, acid mine drainage (AMD) which has high sulfate, metals and low pH water form. The acidity in turn can promote solubilization of heavy metals such as copper, zinc, nickel, cobalt and arsenic from the rocks. The most important characteristics of AMD known as the most common environmental problem related to mining activities is its high metal concentrations . These waters with high metal content affect ecological life in many different aspects such as plant growing in these waters can be toxic to whole food cycle. Microorganisms play a major role in oxidation of sulfur ores. The most common and important microorganism is Acidithiobacillus species. Acidithiobacillus can oxidize sulfur minerals utilizing molecular oxygen and Fe(III) as a electron acceptor. In these reactions bacteria act as catalyst and cause the reactions proceed faster, as a result, formation of AMD is largely controlled by bacterial reactions. Therefore, understanding and elucidating oxidation mechanisms of sulfide minerals such as galena, sphalerite and pyrite in any region need to take microbial reactions into account. The main goal of the research was to investigate microbial community composition of abandoned Pb-Zn mine and their influences on geochemical reactions in the region. For our goal, we used laboratory and field approaches. For laboratory studies, we designed biological and abiotic oxidation experiments with galena, sphalerite and pyrite under various conditions (pH (2-4), temperature (4-25oC)) which mimics the field conditions. The biological experiments were conducted by using the acidophilic sulfur oxidizing bacteria, Acidithiobacillus thiooxidans bacterium (14887). Chemical control experiments were carried out under identical conditions as the biological experiments except addition of the bacterial culture to determine the role of bacteria on sulfur mineral oxidation rate. Sediment and water samples from the various waste rocks were collected during the field excursion in August 2010. Chemical properties (pH, temperature, Eh, EC) of the water samples (temporary tailing pools and the creek) were determined in the field using portable instrument (WTW). High concentration of Pb, Zn, Cu, Fe, Co, As and Cd in sediments and water were determined. 16S rRNA gene sequence analysis was performed in the sediment and water samples for identification of bacterial population in the mine tailing area. Laboratory oxidation experiments with galena and sphalerite at 25oC showed high oxidation rate with A. thioxidans compared to chemical control experiments. Experiments under suboptimal temperature (4, 10oC) indicated that A. thioxidans was still active even under 4oC although the oxidation rate of galena and sphalerite were significantly lower compared to 25oC. Unlike galena and sphalerite, oxidation of pyrite with bacteria and without bacteria did not show significant reaction rate. Our sequence analysis indicated high bacterial diversity in the Balya Pb-Zn tailings, most prevalent sulfur -Fe(II) oxidizer along with Fe(III) reducer bacterium. Our sequence and geochemical analysis suggest that sulfur oxidation is mostly mediated by complex microbial reactions by sulfur –oxidizer bacterium in the tailings.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2011
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2011
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2011
Anahtar kelimeler
sülfür mineral oksidasyon,
16S rRNA analiz,
sulfur mineral oxidation,
16S rRNA analysis