Bulanık Karar Ortamında Karınca Kolonisi Optimizasyonu Yöntemiyle Araç Rotalama

dc.contributor.advisorKahraman, Cengiz
dc.contributor.authorKılıç, Sezgin
dc.contributor.departmentEndüstri Mühendisliği
dc.contributor.departmentIndustrial Engineering
dc.date2008
dc.date.accessioned2008-10-26
dc.date.accessioned2015-06-23T07:23:07Z
dc.date.available2015-06-23T07:23:07Z
dc.date.issued2008-11-03
dc.descriptionTez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008
dc.descriptionThesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2008
dc.description.abstractBu çalışmada, bulanık kümeler ve olabilirlik teorilerinden faydalanılarak zaman aralıklı araç rotalama problemi için bulanık karar ortamında kullanılabilecek modeller önerilmiştir. Geçmiş çalışmalar incelendiğinde problemin genellikle belirsizliklerin ve esnekliklerin göz ardı edilerek modellendiği görülmüştür. Bu tip modellere üretilen çözümler çoğunlukla uygulama aşamasında geçerliliklerini yitirmekte ve elle düzeltilmeleri gerekmektedir. Stokastik modellerin kullanıldığı çalışmalarda ise önerilen yöntemlerin çok fazla hesaplama yükü gerektirdiği ve parametrelerinin belirlenmesi için problemle ilgili geçmiş verilere ihtiyaç duyulduğu görülmektedir. Bu nedenlerle stokastik modeller de gerçek hayatta karşılaşılan problemlerin çözümünde rahatlıkla kullanılamamaktadır. Önerilen bulanık programlama modellerinde belirsizliklerin ve esnekliklerin modellenmesi için bulanık kümeler ve bulanık aralıklar kullanılmıştır. Gereklilik ve olabilirlik ölçütleri ile planlayıcının belirleyeceği en yüksek risk seviyesine ve en düşük müşteri tatmin düzeyine sahip çözümler üretilebilmektedir. Bulanık modeller ile yüksek veri işleme maliyeti düşürülürken modellerin geçerlilikleri de arttırılmıştır. Önerilen modellere çözüm oluşturmak amacıyla karınca kolonisi optimizasyonu tabanlı bir algoritma geliştirilmiştir. Örnek problemler üzerinde gerçekleştirilen deneylerde önerilen modellerin ve çözüm yönteminin bir karar destek sistemi içerisinde kullanımı durumunda planlayıcıların tercih ve önceliklerine göre alternatif çözümlerin üretilebileceği ve oluşturulan çözümler hakkında planlayıcılara ve müşterilere daha fazla bilgi sağlanabileceği değerlendirilmiştir.
dc.description.abstractIn this study, the fuzzy set and possibility theories are utilized in order to propose models for the vehicle routing problem that can be used in uncertain decision environments. Exploring the literature about the problem, it has been seen that the problem is usually modeled by ignoring uncertainties and flexibilities. Whereas, the solutions generated with these models usually become infeasible when implemented and the planners are involved to make corrections by hand. Stochastic models are often complex and require large computational effort. Moreover, it may be hard or expensive to assume any parameter. For these reasons, stochastic models are also behind the needs of users. The fuzzy programming models proposed in this study exploit fuzzy sets and fuzzy intervals in order to model flexibilities and uncertainties. Using the necessity and the possibility measures, the solutions that have the maximum risk level and the minimum customer satisfaction, which are specified by the user, can be generated. Validities of the models are increased while decreasing the computational effort with fuzzy programming models. An ant colony optimization based algorithm for the proposed models is also developed. Results of the experimental studies with benchmark problems indicate that the proposed models can be usable for solving practical problems. The proposed approach can be integrated with a decision support system in order to generate alternative solutions achieving planners’ preferences and obtain more information about the solutions for both the planners and the customers.
dc.description.degreeDoktora
dc.description.degreePhD
dc.identifier.urihttp://hdl.handle.net/11527/5902
dc.publisherFen Bilimleri Enstitüsü
dc.publisherInstitute of Science and Technology
dc.rightsİTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak herhangi bir biçimde yeniden oluşturulması veya dağıtılması yazılı izin alınmadan yasaklanmıştır.
dc.rightsİTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectAraç rotalama problemi
dc.subjectBulanık kümeler
dc.subjectOlabilirlik teorisi
dc.subjectKarınca kolonisi optimizasyonu
dc.subjectVehicle routing problem
dc.subjectFuzzy sets
dc.subjectPossibility theory
dc.subjectAnt colony optimization
dc.titleBulanık Karar Ortamında Karınca Kolonisi Optimizasyonu Yöntemiyle Araç Rotalama
dc.title.alternativeVehicle Routing In A Fuzzy Decision Environment Using Ant Colony Optimization Approach
dc.typeDoctoral Thesis

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
8935.pdf
Boyut:
10.72 MB
Format:
Adobe Portable Document Format

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
license.txt
Boyut:
3.16 KB
Format:
Plain Text
Açıklama