Yeni Bir Perde Sonlu Eleman Modeli Ve Çok Katlı Perde - Çerçeveli Yapı Sistemlerinin Göçme Güvenliğinin Belirlenebilmesi İçin Yük Artımı Yöntemi
Yeni Bir Perde Sonlu Eleman Modeli Ve Çok Katlı Perde - Çerçeveli Yapı Sistemlerinin Göçme Güvenliğinin Belirlenebilmesi İçin Yük Artımı Yöntemi
Dosyalar
Tarih
Yazarlar
Cengiz, Emel Yükseliş
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Bu çalışmada, yeni bir perde sonlu eleman modeli ve bu elemanlar uygulanarak yalnız perdelerden veya perde - çerçevelerden oluşan, çok katlı, üç boyutlu, kat düzlemleri içinde rijit hareket yapan yapı sistemlerinin ideal elasto - plastik malzeme kabulü ile hesabına yönelik bir yöntem geliştirilmiştir. Sistemlerin sabit düşey ve artan yatay yükler etkisinde yük artımı yöntemiyle hesabı yapılmakta, göçme yükü bulunmaktadır. Her düğüm noktasında altı deplasman parametresi olmak üzere toplam 24 serbestlik dereceli dikdörtgen perde sonlu elemanların yerdeğiştirme fonksiyonlarının seçiminde kat yüksekliği boyunca kübik değişim, kat hizasında rijit hareket nedeni ile doğrusal değişim kabul edilmiştir. İzotrop malzeme kabulü ile yeni perde sonlu elemana ait şekildeğiştirme matrisi, rijitlik matrisi ve gerilme matrisi hesaplanarak tablolar halinde verilmiştir. Geliştirilen sonlu eleman ile perdeler düşey doğrultuda çok sayıda elemana bölünmeden her katta tek eleman alınarak doğru çözümler elde edilmiş, kat hizasında rijit düzlem hareketi kabulünün de dikkate alınması ile bilinmeyen sayısı oldukça azaltılmıştır. Taşıyıcı sistemi oluşturan kolon ve kiriş çubuk elemanlarda plastik mafsal hipotezi uygulanırken, perde elemanların düğüm noktalarında belirli bir e elastik şekildeğiştirme sınırının aşılması durumunda plastikleşmenin oluştuğu kabul edilmiştir. Matris deplasman yöntemiyle hesap yapılırken göçme güvenliğinin belirlenebilmesi için, perde veya çubuk elemanda plastikleşme oluşması durumuna göre, bu nokta veya kesitlerde plastik yerdeğiştirmeler ilave bilinmeyenler olarak alınıp sistem rijitlik matrisine satır ve kolon eklenerek çözüm yapılmıştır.
In this study, a new finite wall element model and a method for calculation of multi-stories, with three dimensions, only shear walled or shear walled – framed structures using finite shear wall elements, assumed ideal elasto – plastic material is developed. The floor slabs can be assumed to be infinitely rigid in their own planes. The collapse load for the system subjected to factored constant gravity loads and proportionally increasing lateral loads is calculated with a method of load increments. The finite wall element model has six displacement parameters in every node and totally twenty four degrees of freedom. The displacement functions over the element is determined as a cubic variation along the storey height and linear variation in horizontal direction because of the rigid behavior of the floor slab. By assuming isotrop materials, the deformation, stiffness and stress matrices for the element are obtained and tabulated in the thesis. Using this element, in case of walls are chosen as only one element in every floor, correct solutions are obtained. Because of the rigid behavior of the floor slabs, the number of unknowns are reduced substantially. While in framed structures, classical plastic hinge hypothesis is used, in nodes of wall elements if vertical deformation parameter is exceeded εe, which is elastic limited deformation, this node is accepted as a plastic node. While the system is calculated with matrix displacement method, for determined of collapse safety, plastic displacements are taken as additional unknowns, rows and columns are added to the system stiffness matrix.
In this study, a new finite wall element model and a method for calculation of multi-stories, with three dimensions, only shear walled or shear walled – framed structures using finite shear wall elements, assumed ideal elasto – plastic material is developed. The floor slabs can be assumed to be infinitely rigid in their own planes. The collapse load for the system subjected to factored constant gravity loads and proportionally increasing lateral loads is calculated with a method of load increments. The finite wall element model has six displacement parameters in every node and totally twenty four degrees of freedom. The displacement functions over the element is determined as a cubic variation along the storey height and linear variation in horizontal direction because of the rigid behavior of the floor slab. By assuming isotrop materials, the deformation, stiffness and stress matrices for the element are obtained and tabulated in the thesis. Using this element, in case of walls are chosen as only one element in every floor, correct solutions are obtained. Because of the rigid behavior of the floor slabs, the number of unknowns are reduced substantially. While in framed structures, classical plastic hinge hypothesis is used, in nodes of wall elements if vertical deformation parameter is exceeded εe, which is elastic limited deformation, this node is accepted as a plastic node. While the system is calculated with matrix displacement method, for determined of collapse safety, plastic displacements are taken as additional unknowns, rows and columns are added to the system stiffness matrix.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2004
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2004
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2004
Anahtar kelimeler
Göçme yatay yük parametresi,
perde sonlu eleman,
elasto-plastik,
plastik mafsal hipotezi.,
Horizontal collapse load parameter,
finite shear wall element,
elasto-plastic materials,
plastic hinge hypothesis.