Gauss Karışım Modelleri Kullanılarak Ses İmzalarının Sınıflandırılması

dc.contributor.advisor Günsel, Bilge tr_TR
dc.contributor.author Herkiloğlu, Kadir tr_TR
dc.contributor.department Telekomünikasyon Mühendisliği tr_TR
dc.contributor.department Telecommunication Engineering en_US
dc.date 2005 tr_TR
dc.date.accessioned 2015-07-13T10:34:45Z
dc.date.available 2015-07-13T10:34:45Z
dc.description Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2005 tr_TR
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2005 en_US
dc.description.abstract Bu tez çalışması kapsamında, Gauss karışım modelleri kullanılarak ses imzalarının sınıflandırılması gerçeklenmiştir. Geliştirilen sistemde, daha önceden sisteme eğitim için verilen ses verileri kullanılarak, ses imzaları modellenmekte ve sistem girişine verilen 2 saniyelik ses bölütünün hangi parçaya veya hangi müzik türüne ait olduğu yüksek hızla, yüksek doğruluk oranıyla ve düşük yanlış alarm oranıyla bulunabilmektedir. Geliştirilen sistemle literatürde bulunan sistemlerle aynı tanıma performansına ulaşılmıştır. Tez kapsamında ses imzası modelleme Gauss Karışım Modelleri kullanılarak yapılmış ve imzalar Bayes sınıflandırıcı ile sınıflandırılmıştır. Karşılaştırma açısından testler Destek Vektör Makinesi kullanılarak ses imzalarını öğrenen ve sınıflandıran bir sistem için de tekrarlanmıştır. Testler kapsamında tür ve parça ayrımı performansları incelenmiştir. Bunlara ek olarak sistemin, mp3 sıkıştırma, kanal gürültüsü ekleme, zamanda sıkıştırma ve 10kHz kesim frekanslı alt geçiren süzgeçle filtreleme ataklarına karşı gürbüzlüğü test edilmiş ve sonuçları tablolar ve grafikler halinde sunulmuştur. Geliştirilen ses imzası tanıma sisteminin işlemsel karmaşıklığı düşük olup hızlı modelleme ve sınıflandırma yapabildiği gibi arama veritabanının kolaylıkla güncellenmesine olanak tanır. Bu da geniş müzik veritabanlarının kolaylıkla işlenmesine olanak sağlamaktadır. tr_TR
dc.description.abstract In this thesis, a system that classifies audio fingerprints using Gaussian Mixture Models classifier, is proposed. The system has the ability to decide the music clip and the music type of a 2 seconds long audio segment, fast, with a high accuracy and with low positive false alarm ratio. The proposed system brings an innovation by providing robustness to time compression attacks to which most of the current systems are not robust. The classifier gives the results much faster than ordinary searching algorithms with a high identification percentage. 2 second granularity is the second innovation proposed in this thesis work. This level of granularity is succeeded with keeping the high performance and it is below the MPEG21 standard. The performance tests for identification of audio fingerprints are performed by using GMM classifier. However, in order to compare the results the same tests with the same conditions are repeated by using Support Vector Machine. In these tests, the ability to identify the clip and the music type of the segments is observed. Furthermore, the robustness of the system to mp3 compression, White Gaussian channel noise adding, time compression, and 10kHz low pass filtering attacks are examined. Beyond these, the proposed system has a low computational complexity and can easily be updated. So it provides fast and automatic process of large audio databases. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.description.degree M.Sc. en_US
dc.identifier.uri http://hdl.handle.net/11527/7753
dc.publisher Fen Bilimleri Enstitüsü tr_TR
dc.publisher Institute of Science and Technology en_US
dc.rights İTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights İTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject Ses İmzası tr_TR
dc.subject Gauss Karışım Modeli tr_TR
dc.subject Destek Vektör Makinesi tr_TR
dc.subject MPEG21 tr_TR
dc.subject Beklenti Enbüyükleme tr_TR
dc.subject Audio fingerprint en_US
dc.subject GMM en_US
dc.subject MPEG21 en_US
dc.subject SVM en_US
dc.subject Expection Maximization en_US
dc.title Gauss Karışım Modelleri Kullanılarak Ses İmzalarının Sınıflandırılması tr_TR
dc.title.alternative Classification Of Audio Fingerprints Using Gaussian Mixture Models en_US
dc.type Thesis en_US
dc.type Tez tr_TR
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
3468.pdf
Boyut:
767.88 KB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.14 KB
Format:
Plain Text
Açıklama