İnsansız Kara Araçları Navigasyonunda Genişletilmiş Kalman (gkf) Ve Sıkıştırılmış Genişletilmiş Kalman Filtre (sgkf) Tabanlı Ezlh Yöntemlerinin Geliştirilmesi Ve Karşılaştırılması

dc.contributor.advisor Temeltaş, Hakan tr_TR
dc.contributor.author Kavak, Deniz tr_TR
dc.contributor.department Kontrol ve Otomasyon Mühendisliği tr_TR
dc.contributor.department Control and Otomation Engineering en_US
dc.date 2008 tr_TR
dc.date.accessioned 26.01.2008 tr_TR
dc.date.accessioned 2015-06-15T17:03:11Z
dc.date.available 2015-06-15T17:03:11Z
dc.description Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008 tr_TR
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008 en_US
dc.description.abstract Mobil robot navigasyonunda kullanılan Eş Zamanlı Lokalizasyon ve Haritalama (EZLH) algoritmalarının en temel iki problemi bulunmaktadır. İlk problem gözlemler neticesinde haritaya eklenen işaretçi nesnelerin sayısının artması ile oluşan hesaplama yüküdür. İkinci problem yapılan gözlemlerin haritaya daha önceden eklenen işaretçi nesnelere mi yoksa yeni işaretçi nesneleremi ait olduğu bilgisini veren veri ilişkilendirmedir. Bu çalışmada, mobil robot navigasyonundaki en çok kullanılan ve iyi geliştirilmiş bir filtre olan Genişletilmiş Kalman Filtre (GKF) tabanlı EZLH ile GKF’nin getirdiği hesaplama yoğunluğuna çözüm olarak sunulan Sıkıştırılmış Genişletilmiş Kalman Filtre (SGKF) tabanlı EZLH uygulamasının Bireysel Uyumlu Yakın Komşuluk (BUYK) ve Bileşik Uyumlu Dallanma ve Bağlanma (BUDB) veri ilişkilendirme algoritmaları kullanılarak karşılaştırılmıştır. İki adet uygulama programı yazılmıştır. İlk uygulama programında GKF ve SGKF işlemci zamanları ve kovaryans matrisleri arasındaki farklar çeşitli sayıda işaretçi nesne sayısıyla karşılaştırılmıştır. İkinci uygulamada ise diferansiyel araç ve LMS 200 2-D lazer sensörü modellenerek karesel bir yörüngede değişik sayıda rastgele atanmış işaretçi nesneler ile BUYK ve BUDB veri ilişkilendirme algoritmalarını içeren GKF ve SGKF tabanlı EZLH simulasyonu yapılmıştır. tr_TR
dc.description.abstract Simultaneous Localization and Mapping (SLAM) using for the mobile robot navigation has two main problems. First problem is the computational complexity due to the growing state vector with the added landmark in the environment. Second problem is data association which matches the observations and landmarks in the state vector. In this study, we compare Extended Kalman Filter (EKF) based SLAM which is well-developed and well-known algorithm , and Compressed Extended Kalman Filter (CEKF) based SLAM developed for decreasing of the computational complexity of the EKF based SLAM. We write two simulation program to investigate these techniques. Firts program is written for the comparison of EKF and CEKF based SLAM according to the computational complexity and covariance matrix error with the different numbers of landmarks. In the second program, EKF and CEKF based SLAM with the ICNN and JCBB data association algorithms simulations are presented. For this simulation differential drive vehicle that moves in a 10m square trajectory and LMS 200 2-D laser range finder are modelled and landmarks are randomly scattered in that 10m square environment. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.description.degree M.Sc. en_US
dc.identifier.uri http://hdl.handle.net/11527/5250
dc.publisher Fen Bilimleri Enstitüsü tr_TR
dc.publisher Institute of Science and Technology en_US
dc.rights İTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights İTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject Navigasyon tr_TR
dc.subject EZLH tr_TR
dc.subject GKF tr_TR
dc.subject SGKF tr_TR
dc.subject BUYK tr_TR
dc.subject BUDB tr_TR
dc.subject Navigation en_US
dc.subject SLAM en_US
dc.subject EKF en_US
dc.subject CEKF en_US
dc.subject ICNN en_US
dc.subject JCBB en_US
dc.title İnsansız Kara Araçları Navigasyonunda Genişletilmiş Kalman (gkf) Ve Sıkıştırılmış Genişletilmiş Kalman Filtre (sgkf) Tabanlı Ezlh Yöntemlerinin Geliştirilmesi Ve Karşılaştırılması tr_TR
dc.title.alternative Comparison And Improvement Of Extended Kalman Filter (ekf) And Compressed Extended Kalman Filter (cekf) Based Slam Methods For Unmanned Ground Vehicle (ugv) Navigation en_US
dc.type Thesis en_US
dc.type Tez tr_TR
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
7811.pdf
Boyut:
1.82 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.16 KB
Format:
Plain Text
Açıklama