Kolektif Sınıflandırma Yöntemleri İçin Öznitelik Ve Düğüm Seçimi

dc.contributor.advisor Çataltepe, Zehra tr_TR
dc.contributor.author Şenliol, Barış tr_TR
dc.contributor.department Bilgisayar Mühendisliği tr_TR
dc.contributor.department Computer Engineering en_US
dc.date 2010 tr_TR
dc.date.accessioned 2010-07-02 tr_TR
dc.date.accessioned 2015-04-07T13:59:34Z
dc.date.available 2015-04-07T13:59:34Z
dc.date.issued 2010-07-13 tr_TR
dc.description Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2010 tr_TR
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2010 en_US
dc.description.abstract Bu çalışmada, kolektif sınıflandırma yöntemlerinin öznitelik ve/veya düğüm seçme yöntemleri ile birlikte kullanılmasının sınıflandırma performanslarında oluşturacağı değişim normal ve özniteliksel olarak zenginleştirilmiş ağ yapısına sahip veri kümeleri üzerinde araştırılmıştır. Öznitelik seçme yöntemleri olarak mRMR ve geliştirilen FCBF# yöntemi kullanılırken, düğüm seçmek için derece ve komşuluk tutarlılık oranı gibi yeni kıstaslar önerilmiştir. Yapılan deneyler sonucunda öznitelik ve düğüm seçme yöntemlerinin kullanılmasının homofili ve otokorelasyonu arttırdığı, bu nedenle de veri kümelerinden alınan doğruluk performansında iyileşme sağladığı gözlenmiştir. Öznitelik seçme yöntemleri sadece gürültü veri kümelerinde değil gürültü olmadığı durumlarda bile belirgin performans artışlarına neden olurken, düğüm seçme yöntemlerinin komşuluk sayısı çok olduğu durumlarda oluşan gürültülü ilişkilerden veri kümesini kurtararak çok az sayıda düğüm seçildiği durumlarda bile performansı arttırdığı görülmüştür. Ayrıca geliştirilen öznitelik zenginleştirme yönteminin içerik tabanlı sınıflandırıcıların performanslarını kolektif sınıflandırma yöntemlerinin performanslarına yakınlaştırdığı hatta bazı deneylerde geçtiği gözlenmiştir. tr_TR
dc.description.abstract In this study, effects of using feature and node selection methods are examined with collective classification algorithms on network data with normal and enriched content to show how much improvement can be made on these classification method’s performances. mRMR and proposed FCBF# methods are used for feature selection while for node selection, some new approaches, such as degree based, neighborhood consistency, are proposed and their results were compared. Experiments showed that using feature and node selection methods on datasets with network structure increases homophily and autocorrelation therefore performances of collective classification algorithms can be increased using selection methods. Feature selection methods improve classification results significantly not only with noisy features also with non-noisy content information. In network structures with too many noisy links, node selection methods decrease the noise by eliminating noisy nodes and even when using low number of nodes, an improvement on performance of classification is achieved. In addition, it is shown that proposed feature enrichment method increases content only classification performances and makes them perform as much as collective classification algorithms. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.description.degree M.Sc. en_US
dc.identifier.uri http://hdl.handle.net/11527/366
dc.publisher Fen Bilimleri Enstitüsü tr_TR
dc.publisher Institute of Science and Technology en_US
dc.rights İTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights İTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject öznitelik seçimi tr_TR
dc.subject kolektif sınıflandırma tr_TR
dc.subject öznitelik zenginleştirmesi tr_TR
dc.subject düğüm seçimi tr_TR
dc.subject feature selection en_US
dc.subject collective classification en_US
dc.subject feature enrichment en_US
dc.subject node selection en_US
dc.title Kolektif Sınıflandırma Yöntemleri İçin Öznitelik Ve Düğüm Seçimi tr_TR
dc.title.alternative Feature And Node Selection For Collective Classification en_US
dc.type Thesis en_US
dc.type Tez tr_TR
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
10642.pdf
Boyut:
1.41 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.14 KB
Format:
Plain Text
Açıklama