Atölye Tipi Çizelgeleme Problemlerine Parçacık Sürü Optimizasyonu Yaklaşımı Ve Genetik Algoritma Modeli İle Karşılaştırılması

dc.contributor.advisorYenisey, Mehmet Mutlu
dc.contributor.authorŞevkli, Mehmet
dc.contributor.departmentEndüstri Mühendisliği
dc.contributor.departmentIndustrial Engineering
dc.date2005
dc.date.accessioned2015-11-20T09:34:45Z
dc.date.available2015-11-20T09:34:45Z
dc.descriptionTez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2005
dc.descriptionThesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2005
dc.description.abstractBu tezde, zor çizelgeleme problemleri arasında yer alan atölye tipi çizelgeleme problemlerinin çözümünde alternatif yeni bir yaklaşım ele alınmıştır. Çözüm yöntemi olarak, son yıllarda hızla gelişen popülasyon temelli yeni sezgisel yöntemlerden biri olan Parçacık Sürü Optimizasyonu (PSO) kullanılmıştır. Bu tezde, ilk olarak atölye tipi çizelgeleme problemleri için PSO ve Genetik Algoritma (GA) modeli tasarlanmış ve tamamlanma zamanı (makespan) başarım ölçütüne göre literatürde yer alan test problemleri üzerindeki performansları incelenmiştir. Daha sonra PSO ve GA modellerinin sonuçları % 5, % 1 ve ‰ 5 anlamlılık düzeylerinde istatistiksel olarak karşılaştırılıp incelenmiştir. Sonuçta, PSO modeli ile GA modelinin birbirine yakın performans gösterdiği, bazı zor problemlerde ise PSO modelinin GA modeline göre daha iyi sonuç verdiği görülmüştür. Bunlara ek olarak, basit ve etkili bir yerel arama yöntemi olan Değişken Komşuluk Arama (VNS) kullanılarak, yerel aramalı PSO ve GA modelleri geliştirilmiş ve literatürdeki bazı zor test problemlerine uygulanmıştır. Daha sonra bu iki model istatistiksel olarak karşılaştırılıp incelenmiştir. Sonuçta, yerel aramalı PSO modelinin, yerel aramalı GA modeline göre % 5 anlamlılık düzeyinde daha iyi olduğu görülmüştür. Ayrıca, yerel aramalı PSO modelinin sonuçları, literatürde ün yapmış diğer sezgisel yöntemlerin sonuçlarıyla karşılaştırılmış, daha iyi veya eşdeğer seviyede olduğu görülmüştür.
dc.description.abstractIn this dissertation, a new meta-heuristic technique called Particle Swarm Optimization (PSO) is applied to Job Shop Scheduling (JSS) problem, which is one of the hardest combinatorial optimization problems. First of all, a PSO and a Genetic Algorithm(GA) model for the JSS problem are developed and applied to the well-known benchmark suites in the literature with the makespan criterion. Then, PSO and GA model results are compared statistically at 5 %, 1 % and 5 ‰ significant levels. It is concluded that, PSO results are competitive and sometimes better than GA results over the 122 benchmark problems. In addition, a simple but efficient local search method called Variable Neighborhood Search (VNS) is embedded to the PSO and GA models and applied to several hardest benchmark suites. Afterwards, PSO and GA model with VNS results are compared statistically and it is concluded that, PSO model with VNS results are better than GA model with VNS at 5 % significant level. The results for the PSO algorithm with VNS are also presented and compared with many efficient meta-heuristic algorithms in literature. As a final result, PSO with VNS results are generally found to be better than other results.
dc.description.degreeDoktora
dc.description.degreePhD
dc.identifier.urihttp://hdl.handle.net/11527/10574
dc.publisherFen Bilimleri Enstitüsü
dc.publisherInstitute of Science and Technology
dc.rightsİTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır.
dc.rightsİTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission.
dc.subjectParçacık Sürü Optimizasyonu
dc.subjectAtölye Tipi Çizelgeleme
dc.subjectSezgiseller
dc.subjectGenetik Algoritma
dc.subjectDeğişken Komşu Arama
dc.subjectParticle Swarm Optimization
dc.subjectJob Shop Schedulıng
dc.subjectMeta-Heurıstıcs
dc.subjectGenetic Algoiıthm
dc.subjectVariable Neighbors Search
dc.titleAtölye Tipi Çizelgeleme Problemlerine Parçacık Sürü Optimizasyonu Yaklaşımı Ve Genetik Algoritma Modeli İle Karşılaştırılması
dc.title.alternativeA Particle Swarm Optimization Approach For The Job Shop Scheduling Problems And Comparing With The Genetic Algorithm Model
dc.typeDoctoral Thesis

Dosyalar

Orijinal seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
3421.pdf
Boyut:
8.54 MB
Format:
Adobe Portable Document Format

Lisanslı seri

Şimdi gösteriliyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
Ad:
license.txt
Boyut:
3.16 KB
Format:
Plain Text
Açıklama