Ergimiş tuz elektrolizi ile metal oksit/sülfürden başlanarak metal ve metal borür sentezi
Ergimiş tuz elektrolizi ile metal oksit/sülfürden başlanarak metal ve metal borür sentezi
Dosyalar
Tarih
2020-01-08
Yazarlar
Danyal, Mehmet Barış
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Metal borürler sahip olduğu yüksek ergime sıcaklığı, yüksek sertliği, yüksek korozyon ve aşınma dayanımı, iyi kimyasal kararlılık, elektriksel ve termal iletkenliği gibi özellikleri nedeniyle kesici uçlardan, aşındırıcılara, katalizörlerden, kaynak dolgusuna ve sert kaplamalara kadar birçok alanda kullanılmaktadır. Metal borürlerin üretiminde çok farklı yöntemler kullanılabilmesine rağmen endüstrinin ihtiyacına cevap verebilen yüksek saflıkta ve kitlesel üretime izin veren metal borür üretim yöntemleri sınırlıdır. Metal borür üretimi; elementel fazlardan direkt olarak, karbotermik, metalotermik redüksiyon ile oksitli bileşiklerden, gaz fazından hidrojen ile redüklenerek ve ergimiş tuzlar kullanılarak elektrokimyasal olarak yapılabilmektedir. Metal borürlerin üretiminde öne çıkan yaygın yöntem karbotermik ve metalo-termik teknikleri içine alan pirometalurjidir. Pirometalurjik borür üretim yöntemlerinin en büyük dezavantajı yüksek saflıkta, homojen metal borür eldesinin zorluğu ve yüksek sera gazı emisyonudur. Günümüzde çevresel, kontrollü ve daha verimli üretim teknolojilerine geçiş her alanda büyük bir hızla devam etmektedir. Özellikle son yıllarda pirometalurjik üretim yöntemleri üzerindeki sera gazı emisyon baskısının da etkisiyle yüksek sıcaklık metal ve bileşiklerinin üretiminde elektrokimyasal üretim teknikleri öne çıkmaya başlamış ve metal, alaşım üretimleri üzerine yoğun çalışmalar yapılmaktadır. Ergimiş tırtuz elektrolizi (ETE) ile borür sentezi elektrolit bileşeni, sıcaklık, akım yoğunluğu parametreleri değiştirilerek istenilen stokiometri ve formda yapılabilmektedir. Bu tez çalışmasında, çevresel olarak hiçbir zehirli gaz salınımı olmayan ve kararlı oksit esaslı elektrolitlerle nispeten kısa sürelerde, endüstriyel olarak talep edilen kompozisyonlarda geçiş grubu metal borürlerinin (TiB2, Ni3B) elektrokimyasal üretimine yönelik bir proses geliştirilmesi amaçlanmıştır. Oksit esaslı başlangıç malzemelerden oksit esaslı elektrolit kullanımı ile elektrokimyasal olarak borür sentezinde ilk olarak boraksın ana bileşenlerinden sodyumun rolünün belirlenmesi amacıyla; borür yapmayan antimonun, Sb2S3'den boraks elektrolit içerisindeki redüksiyonu gerçekleştirilmiştir. Elektrolit içindeki sodyumun elektrokimyasal redüksiyonu ve metalotermik redüksiyon etkisi metalik antimon ve elektrolit ile arasındaki yoğunluk farkı sayesinde ayrıştırılan NaSbS2 fazının eldesiyle ortaya konmuştur. Katodik akım veriminin incelenmesine yönelik sabit 800 °C sıcaklıkta ve 10 dk'lık sabit deney sürelerinde gerçekleştirilen deneylerde uygulanan akım yoğunluğu ile katodik akım veriminin 600 mA/cm2 akım yoğunluğuna kadar düşük miktarlarda olsa da arttığı, 600 mA/cm2'de % 62 ile en yüksek değere ulaştıktan sonra 800 mA/cm2'de hemen hemen değişmediği görülmüştür. Elektrolitten metal kazanım verimlerindeki değişimin gözlenmesi amacıyla en yüksek akım veriminin elde edildiği 600 mA/cm2 akım yoğunluğunda, 800 °C deney sıcaklığında 10-40 dk elektroliz sürelerinde deneyler sonucunda 40 dk sonunda antimon kazanım verimin % 99'a ulaştığı tespit edilmiştir. Nikel borür endüstride özellikle katalizör, kaynak alaşımı ve deoksidan olarak kullanılan önemli bir metal borürdür. Ni-Ni3B ötektik alaşım yaparak 1087 ºC ergime sıcaklığına kadar inmektedir. Ni3B üretiminde NiO'nun redüksiyon davranışı CaCl2 elektroliti içerisinde 1200 °C sıcaklıkta CV kullanılarak belirlenmiştir. Redüksiyonun tek adımda -0,20 V'da gerçekleştiği görülmüştür. Aynı zamanda bor sağlayıcısı görevi gören boraksın da CaCl2 içerisinde CV analizleri yapılmış ve boraksın redüksiyonun -0,5 V'da başlayan ve -1,2'de sonlanan geniş bir pik vererek gerçekleştiği görülmüştür. Ni2++ 2e- Ni0 E˚= -0,20 V Teorik incelemeler ve CV sonuçları ile nikel oksitten başlanarak boraks elektrolit içerisinde gerçekleştirilen Ni3B üretiminde Ni ve B'un eş zamanlı gerçekleşen metalotermik ve elektrokimyasal reaksiyonlar sonucu redüklendiği, öncelikli olarak nikelin oluştuğu nikel oksit ile temas halinde elde edilen metalik nikel ile ortaya konulmuştur. Redüklenen nikelin borlanması sonucu oluşan Ni3B intermetaliği ve ardından metalik nikel ile birleşerek Ni-Ni3B oluşmaktadır. Elektrokimyasal ve metalotermik redüksiyon ile eş zamanlı olarak sentezlenen bor, Ni-Ni3B alaşımı içindeki nikeli borlayarak Ni3B intermetaliğine çevirmektedir. Ni3B üretimine akım yoğunluğunun (100-400 mA.cm-2), Ni/B oranın (0,5-2) ve sürenin (15-60 dk) etkisi incelenmiştir. Ağırlıkça 0,5 Ni:B oranın, 30 dk deney süresi ve 400 mA.cm-2 akım yoğunluğu şartlarında % 100 Ni3B intermetaliğinin üretiminin mümkün olduğu görülmüştür. Düşük akım yoğunluğu ve kısa deney sürelerinde Ni-Ni3B alaşımları elde edilirken artan akım yoğunluğuna ve süreye bağlı olarak Ni-Ni3B alaşımında Ni3B oranının arttığı tespit edilmiştir. Başlangıçtaki Ni/B (0,5-2) oranına bağlı artan nikel oranı ile elde edilen Ni-Ni3B alaşımındaki Ni miktarının arttığı görülmüştür. Ni/B oranı 0,5, 200 mA/cm2 akım yoğunluğunda, 1200 °C çalışma sıcaklığında, 60 dakika çalışma süresinde Ni3B intermetaliğine ulaşılmıştır. Deney süresine bağlı hücre potansiyelinde kayda değer bir potansiyel değişimi görülmemiştir. Sahip olduğu yüksek ergime noktası, yüksek sertlik, yüksek aşınma ve korozyon direnci, kimyasal kararlılığı, elektrik iletkenliği, hidroklorik ve hidroflorik gibi asitlere ve ergimiş metallere karşı dayanıklılığı gibi önemli özellikleri nedeniyle TiB2 metal borürlerin en önemlilerindendir. Boraks elektrolit içerisinde yapılan TiB2 üretim çalışmalarında titanyum kaynağı olarak TiO2 kullanılmıştır. İlk olarak elektrolit bileşiminde B/Ti oranı ile Na oranının TiB2 partikülleri ve patikül temizliği üzerine etkisi incelenmiştir. B/Ti oranının artışı, Na oranının artışı ve azalışı ile TiB2 partikül kalınlıklarının arttığı belirlenmiştir. B/Ti oranının artışı ve Na oranının azalışı ile TiB2 patikül temizliğinin zorlaştığı, oksitli kalıntı fazların uzaklaştırılamadığı gözlenmiştir. Elektrolit bileşim deneylerinde optimum sonuçlar elde edilen elektrolit bileşiminde (mol%45 Na2B4O7 + mol%18TiO2 + mol%37NaOH) sabit deney süresinde (20 dk.), TiB2 oluşumuna akım yoğunluğu (100-1000 mA/cm2) ve sıcaklığın (800-1200 ºC) etkisi incelenmiştir. Titanyum ile borun elektrokimyasal redüksiyonu da nikel oksitte olduğu gibi 900 °C sıcaklıkta CaCl2 içerisinde CV ile incelenmiş ve TiO2'in iki adımda redüklendiği belirlenmiştir. Ti4++ e- Ti3+ E˚= -0,45 V Ti3++ 3e- Ti0 E˚= -0,8 V XRD ve SEM incelemelerinde çalışılan bütün akım yoğunluklarında TiB2 yapısının elde edildiği belirlenmiştir. Elektron mikroskobu incelemeleri akım yoğunluğunun üretilen TiB2 tanelerinin boyutu üzerinde büyük bir etkisinin olmadığını göstermiştir. Sıcaklığın TiB2 üretimine etkisinin ortaya konulması için yapılan deneylerde 800-1200 ºC sıcaklık aralığında TiB2 sentezi gerçekleştirilmiştir. Hücre potansiyeli 900-1200 ºC arasındaki sıcaklıklarda büyük bir değişiklik göstermeyerek 1,05-1,30 V aralığında değişirken, 800 ºC'da büyük bir artışla 1,80 V'a çıkmıştır. 1000 ºC üzerindeki deneylerde katot titanyum plakanın elektrolit yüzeyinde korozyonu gözlenmiştir. Elektrokimyasal ölçümler ve XRD ve SEM incelemeleri tek fazlı TiB2 oluşumunun, Ni3B üretiminde olduğu gibi Ni2+ ve B3+'nın sıra ile redüksiyonu ile değil de katot yüzeyinde Ti4+ ve B3+'nın ortak redüksiyonu sonucunda gerçekleştiğini göstermiştir. Bu tez kapsamında geliştirilen yöntem, ucuz kimyasallardan faydalanması sebebiyle düşük maliyet ile oldukça hızlı metal borür üretimine olanak sağladığı için çevresel, düşük maliyetli ve yüksek miktarlarda üretime uygun bir metal borür üretim tekniğidir. Bu özellikleri sayesinde endüstrinin ihtiyaçlarını karşılayabilecek, savunma sanayinde ihtiyaç duyulan metal borürlerin milli imkanlarla yerli hammadde ile üretilebilmesine imkan sağlayacak ve son olarak dünyanın bor rezervinin büyük bir kısmına sahip ülkemizin ileri teknoloji metal borürlerin üretiminde öne geçmesini sağlayarak daha yüksek katma değerli ürünleri ihraç eden bir ülke haline gelmesinde önemli bir basamak olacaktır.
Although Turkey is one of the countries with the largest boron reserves in the world, it has not yet reached the place where it should be in the development of boron products and boron-based processes. With the driving force of using our natural resources in effective and high-value-added products, the studies on boron compounds and production processes have gained momentum in recent years, and especially on diffusion-based boronization, worldwide processes have been developed. Boron minerals are used directly in the industry as ore or as compounds such as boron oxide (B2O3), boric acid (H3BO3), or anhydrous borax (Na2B4O7). Boron compounds are mainly used in cleaning materials, agricultural fertilizer production, ceramic materials, glass, metallurgy, wood industry, and nuclear industries. For more efficient use of the country's resources, the development of processes for the production of high-value-added boron-based materials and products are needed, rather than the use of boron as an additive to products in the traditional industry. In such manners, the production of metal borides can be an initial step for high-tech products. Metal borides are being used in industry for a variety of applications like cutting tools, abrasives, catalysts, solder alloys, and hard coatings due to their distinguishing properties like high melting point, high hardness, high corrosion and abrasion resistance, good chemical stability. Although many different methods can be used in the production of metal borides, metal boride production methods that allow for high purity and mass production which can meet the needs of the industry are limited. Metal boride production can be made; directly from elemental phases, a carbothermic, metallothermic reduction from oxides, hydrogen reduction from the gas phase, and electrochemical reduction in molten salts. The most prominent method in the production of metal borides is pyrometallurgy involving carbothermic and metallothermic techniques. The main disadvantage of pyrometallurgical boride production methods is the difficulty of obtaining high purity, homogeneous metal borides, and high greenhouse gas emissions. Nowadays, the transition to environmental, controlled, and more efficient production technologies continues at a rapid pace in every field. In recent years, electrochemical production techniques have started to come into prominence in the production of high-temperature metals and compounds with the effect of greenhouse gas emission pressure on pyrometallurgical production methods and intensive studies are being done on metal and alloy production. Boride synthesis can be done by molten salt electrolysis in desired stoichiometry and form by changing the electrolyte composition, temperature, and current density parameters. In this thesis, it is aimed to develop a process for the electrochemical production of transition group metal borides (TiB2, Ni3B) in industrially demanded compositions at relatively short periods of time with stable oxide-based electrolytes with no environmentally toxic gas release. During the electrochemical boride synthesis by using a borax electrolyte, which is one of the oxide-based starting materials, in order to determine the role of sodium, which is a main component of borax, reduction of antimony, an element that is not forming boride, experiments from Sb2S3 in the borax electrolyte was realized. The electrochemical reduction of the sodium in the electrolyte and the effect of metallothermic reduction are proven by the production of the NaSbS2 phase, which is separated by the difference in density between the metallic antimony and the electrolyte. To inspect the cathodic current efficiency, experiments are done at a constant 800 °C temperature and 10 min constant time. It has been observed that the cathodic current efficiency increased up to 600 mA /cm2 current density and reached 62%. There was no significant increase in cathodic current efficiency when the current density was increased to 800 mA /cm2. In order to observe the change in metal recovery efficiencies from electrolytes, experiments are done at 600 mA/cm2 and 800 °C where the highest current efficiency is observed, 10 to 40 min. It was determined that antimony recovery efficiency reached 99% at the end of 40 min. Nickel boride is an important metal boride used in industry, especially as a catalyst, welding alloy, and deoxidant. Ni-Ni3B eutectic alloy goes down to the melting temperature of 1087 ° C. Reduction behavior of NiO in Ni3B production was determined by using CV at 1200 ° C in CaCl2 electrolyte. The reduction was observed at -0.20 V in one step. CV analysis was performed in CaCl2 with borax which was also a boron provider and it was observed that the reduction of borax was realized by giving a wide peak starting at -0.5 V and ending at -1.2V. Ni2++ 2e- Ni0 E˚= -0,20 V In theoretical studies and CV results, starting from nickel oxide, it is proven that the production of Ni3B in borax electrolyte occurs by the simultaneous metallothermic and electrochemical reactions of Ni and B reduction. Primarily nickel is formed in contact with the nickel oxide has been revealed in SEM inspection. Ni3B intermetallic, which is formed as a result of bosonization of reduced nickel and then combines with metallic nickel to form Ni-Ni3B alloy. Boron reduced simultaneously with electrochemical and metallothermic reduction converts nickel in Ni-Ni3B alloy to Ni3B intermetallic. Homogenous bulk Ni3B is obtained in longer and higher curent density experiments. The effect of current density (100-400 mA.cm-2), Ni / B ratio (0.5-2) and time (15-60 min) on Ni3B production were investigated. It was found that it is possible to produce 100% Ni3B intermetallic under conditions of 0.5 Ni: B by weight, 30 min test time, and current density of 400 mA.cm-2. While Ni-Ni3B alloys were produced at low current density and short test times, it was found that Ni3B ratio increased in Ni-Ni3B alloy due to increasing current density and time. It was observed that the amount of Ni in the Ni-Ni3B alloy increases with the nickel ratio in the initial Ni / B (0.5-2) ratio increased. The Ni3B intermetallic was reached at a current density of 0.5, 200 mA /cm2, at an operating temperature of 1200 ° C, and at a run time of 60 minutes. No significant potential change was observed in the cell potential at the duration of the experiment. TiB2 is one of the most important metal borides due to its high melting point, high hardness, high abrasion and corrosion resistance, chemical stability, electrical conductivity, resistance to molten metals, and to acids such as hydrochloric and hydrofluoric. TiO2 was used as the source of titanium in the production of TiB2 in the borax electrolytes. Firstly, the effect of the B / Ti ratio and Na ratio on TiB2 particles and particle cleaning in the electrolyte composition was investigated. It was determined that TiB2 particle thicknesses increased with increasing B / Ti ratio, increasing and decreasing Na ratio. It was observed that the cleaning of TiB2 particles became more difficult with increasing B / Ti ratio and decreasing Na ratio, oxide residual coming from electrolyte could not be removed. In the experiments, optimum results were obtained in electrolyte with mol 45% Na2B4O7 + mol 18% TiO2 + mol 37% NaOH composition, in constant test time (20 min.). The effect of current density (100-1000 mA / cm2) and temperature (800-1200 °C) on the formation of TiB2 was investigated in the constant electrolyte composition (mol 45% Na2B4O7 + mol 18% TiO2 + mol 37% NaOH) and time (20 min.). Electrochemical reduction of titanium and boron was investigated by CV in CaCl2 at 900 ° C, as in nickel oxide, and it was found TiO2 to be reduced in two steps. Ti4++ e- Ti3+ E˚= -0,45 V Ti3++ 3e- Ti0 E˚= -0,8 V It was determined that TiB2 was obtained in all current densities studied in XRD and SEM investigations. Electron microscopy studies showed that the current density had no significant effect on the size of the TiB2 particles produced. In the experiments carried out to determine the effect of temperature on TiB2 production, TiB2 synthesis was performed in the temperature range of 800-1200 °C. The cell potential did not vary significantly in temperatures between 900-1200 °C, it was in the range of 1.05-1.30 V, but increased to 1.80 V at 800 ° C. Corrosion on the electrolyte surface of the cathode titanium plate was observed in experiments above 1000 °C. Electrochemical measurements and XRD and SEM investigations have shown that single-phase TiB2 formation occurs as a result of the co-reduction of Ti4+ and B3+ at the cathode surface, rather than the reduction of Ni2+ and B3 + in sequence, as in Ni3B production. With the method developed within the scope of this thesis, environmental and low-cost, high volume boride production technique, which enables the production of metal borides at low cost by using cheap chemicals, meets the needs of the industry for the production of high technology ceramics and defense industry. It is no doubt that it will be an important step in becoming a country that exports higher value added products.
Although Turkey is one of the countries with the largest boron reserves in the world, it has not yet reached the place where it should be in the development of boron products and boron-based processes. With the driving force of using our natural resources in effective and high-value-added products, the studies on boron compounds and production processes have gained momentum in recent years, and especially on diffusion-based boronization, worldwide processes have been developed. Boron minerals are used directly in the industry as ore or as compounds such as boron oxide (B2O3), boric acid (H3BO3), or anhydrous borax (Na2B4O7). Boron compounds are mainly used in cleaning materials, agricultural fertilizer production, ceramic materials, glass, metallurgy, wood industry, and nuclear industries. For more efficient use of the country's resources, the development of processes for the production of high-value-added boron-based materials and products are needed, rather than the use of boron as an additive to products in the traditional industry. In such manners, the production of metal borides can be an initial step for high-tech products. Metal borides are being used in industry for a variety of applications like cutting tools, abrasives, catalysts, solder alloys, and hard coatings due to their distinguishing properties like high melting point, high hardness, high corrosion and abrasion resistance, good chemical stability. Although many different methods can be used in the production of metal borides, metal boride production methods that allow for high purity and mass production which can meet the needs of the industry are limited. Metal boride production can be made; directly from elemental phases, a carbothermic, metallothermic reduction from oxides, hydrogen reduction from the gas phase, and electrochemical reduction in molten salts. The most prominent method in the production of metal borides is pyrometallurgy involving carbothermic and metallothermic techniques. The main disadvantage of pyrometallurgical boride production methods is the difficulty of obtaining high purity, homogeneous metal borides, and high greenhouse gas emissions. Nowadays, the transition to environmental, controlled, and more efficient production technologies continues at a rapid pace in every field. In recent years, electrochemical production techniques have started to come into prominence in the production of high-temperature metals and compounds with the effect of greenhouse gas emission pressure on pyrometallurgical production methods and intensive studies are being done on metal and alloy production. Boride synthesis can be done by molten salt electrolysis in desired stoichiometry and form by changing the electrolyte composition, temperature, and current density parameters. In this thesis, it is aimed to develop a process for the electrochemical production of transition group metal borides (TiB2, Ni3B) in industrially demanded compositions at relatively short periods of time with stable oxide-based electrolytes with no environmentally toxic gas release. During the electrochemical boride synthesis by using a borax electrolyte, which is one of the oxide-based starting materials, in order to determine the role of sodium, which is a main component of borax, reduction of antimony, an element that is not forming boride, experiments from Sb2S3 in the borax electrolyte was realized. The electrochemical reduction of the sodium in the electrolyte and the effect of metallothermic reduction are proven by the production of the NaSbS2 phase, which is separated by the difference in density between the metallic antimony and the electrolyte. To inspect the cathodic current efficiency, experiments are done at a constant 800 °C temperature and 10 min constant time. It has been observed that the cathodic current efficiency increased up to 600 mA /cm2 current density and reached 62%. There was no significant increase in cathodic current efficiency when the current density was increased to 800 mA /cm2. In order to observe the change in metal recovery efficiencies from electrolytes, experiments are done at 600 mA/cm2 and 800 °C where the highest current efficiency is observed, 10 to 40 min. It was determined that antimony recovery efficiency reached 99% at the end of 40 min. Nickel boride is an important metal boride used in industry, especially as a catalyst, welding alloy, and deoxidant. Ni-Ni3B eutectic alloy goes down to the melting temperature of 1087 ° C. Reduction behavior of NiO in Ni3B production was determined by using CV at 1200 ° C in CaCl2 electrolyte. The reduction was observed at -0.20 V in one step. CV analysis was performed in CaCl2 with borax which was also a boron provider and it was observed that the reduction of borax was realized by giving a wide peak starting at -0.5 V and ending at -1.2V. Ni2++ 2e- Ni0 E˚= -0,20 V In theoretical studies and CV results, starting from nickel oxide, it is proven that the production of Ni3B in borax electrolyte occurs by the simultaneous metallothermic and electrochemical reactions of Ni and B reduction. Primarily nickel is formed in contact with the nickel oxide has been revealed in SEM inspection. Ni3B intermetallic, which is formed as a result of bosonization of reduced nickel and then combines with metallic nickel to form Ni-Ni3B alloy. Boron reduced simultaneously with electrochemical and metallothermic reduction converts nickel in Ni-Ni3B alloy to Ni3B intermetallic. Homogenous bulk Ni3B is obtained in longer and higher curent density experiments. The effect of current density (100-400 mA.cm-2), Ni / B ratio (0.5-2) and time (15-60 min) on Ni3B production were investigated. It was found that it is possible to produce 100% Ni3B intermetallic under conditions of 0.5 Ni: B by weight, 30 min test time, and current density of 400 mA.cm-2. While Ni-Ni3B alloys were produced at low current density and short test times, it was found that Ni3B ratio increased in Ni-Ni3B alloy due to increasing current density and time. It was observed that the amount of Ni in the Ni-Ni3B alloy increases with the nickel ratio in the initial Ni / B (0.5-2) ratio increased. The Ni3B intermetallic was reached at a current density of 0.5, 200 mA /cm2, at an operating temperature of 1200 ° C, and at a run time of 60 minutes. No significant potential change was observed in the cell potential at the duration of the experiment. TiB2 is one of the most important metal borides due to its high melting point, high hardness, high abrasion and corrosion resistance, chemical stability, electrical conductivity, resistance to molten metals, and to acids such as hydrochloric and hydrofluoric. TiO2 was used as the source of titanium in the production of TiB2 in the borax electrolytes. Firstly, the effect of the B / Ti ratio and Na ratio on TiB2 particles and particle cleaning in the electrolyte composition was investigated. It was determined that TiB2 particle thicknesses increased with increasing B / Ti ratio, increasing and decreasing Na ratio. It was observed that the cleaning of TiB2 particles became more difficult with increasing B / Ti ratio and decreasing Na ratio, oxide residual coming from electrolyte could not be removed. In the experiments, optimum results were obtained in electrolyte with mol 45% Na2B4O7 + mol 18% TiO2 + mol 37% NaOH composition, in constant test time (20 min.). The effect of current density (100-1000 mA / cm2) and temperature (800-1200 °C) on the formation of TiB2 was investigated in the constant electrolyte composition (mol 45% Na2B4O7 + mol 18% TiO2 + mol 37% NaOH) and time (20 min.). Electrochemical reduction of titanium and boron was investigated by CV in CaCl2 at 900 ° C, as in nickel oxide, and it was found TiO2 to be reduced in two steps. Ti4++ e- Ti3+ E˚= -0,45 V Ti3++ 3e- Ti0 E˚= -0,8 V It was determined that TiB2 was obtained in all current densities studied in XRD and SEM investigations. Electron microscopy studies showed that the current density had no significant effect on the size of the TiB2 particles produced. In the experiments carried out to determine the effect of temperature on TiB2 production, TiB2 synthesis was performed in the temperature range of 800-1200 °C. The cell potential did not vary significantly in temperatures between 900-1200 °C, it was in the range of 1.05-1.30 V, but increased to 1.80 V at 800 ° C. Corrosion on the electrolyte surface of the cathode titanium plate was observed in experiments above 1000 °C. Electrochemical measurements and XRD and SEM investigations have shown that single-phase TiB2 formation occurs as a result of the co-reduction of Ti4+ and B3+ at the cathode surface, rather than the reduction of Ni2+ and B3 + in sequence, as in Ni3B production. With the method developed within the scope of this thesis, environmental and low-cost, high volume boride production technique, which enables the production of metal borides at low cost by using cheap chemicals, meets the needs of the industry for the production of high technology ceramics and defense industry. It is no doubt that it will be an important step in becoming a country that exports higher value added products.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2020
Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2020
Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2020
Anahtar kelimeler
Titanyum bor, Bor bileşikleri, Ergimiş tuz elektrolizi,
Titanium boride, Boron compounds, Molten salt electrolysis