Helıcobacter-aktive Regülatör B Hücrelerinin Moleküler Karakterizasyonu

thumbnail.default.placeholder
Tarih
2014-09-26
Yazarlar
Mansur, Nesteren
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science And Technology
Özet
Helicobacter pylori (H. pylori), gram-negatif ve mikroaerofilik bir bakteri olup midede lokalize olur. Konak organizma ile bir denge kurarak uzun yıllar boyunca varlığını sürdürebilir. Dünya genelinde bireylerin %50’si bu bakteri ile enfekte iken, az gelişmiş veya gelişmekte olan ülkelerde bu oran %80’leri bulmaktadır. Enfekte bireylerin çoğu ise semptom göstermez. Ancak bir kısmında gastrik atrofi, displezi, mide kanseri gibi ciddi gastrik komplikasyonlar gelişebilir. H. pylori, konakta kolonize olmak ve varlığını sürdürmek için virülans faktörlerini kullanır. Asidik bir ortam olan midede yaşamını sürdürmesi, ürettiği üreaz enzimi sayesinde gerçekleşir. H. pylori, Cag (Cytotoxin-associated gene) - PAI (patogenite adası) gen bölgesinde tip IV sekresyon sistemini kodlar. Bu sayede, önemli bir virülans faktörü olan CagA proteini hücre içine aktarılır. VacA (vacuolating cytotoxin A) virülans faktörü ise konak epithel hücresi ile olan etkileşimleri, onların manipüle edilmesi, hücre arası bağlantıların bozulması, immün sistemin aktivasyonu gibi çeşitli etkilerde bulunur. Üzerinde bulunan adhezyon molekülleri konak hücreye tutunmak için gereklidir.  Hayvan çalışmalarında, Helicobacter pylori’den immunojenliği daha yüksek olan Helicobacter felis kullanılmaktadır. C57BL/6 adı verilen farelerde yapılan enfeksiyon çalışmalarında özelleşmiş hücre kaybı ile gastrik atrofi gözlenmiştir. Kolonizasyonun azalmasına ters orantılı olarak Th1 hücre gruplarınca üretilen ve pro-inflamatuvar bir sitokin olan IFN-γ oranı artmaktadır. Yüksek patoloji oluşmasına karşın, enfekte bireylerin çoğunun semptom göstermeden yaşamını sürdürmesi regülatör bir grubun varlığıyla alakalıdır. Helicobacter enfeksiyon modelinde Foxp3+ üreten doğal regülatör T hücrelerinin dokuya göç ederek aşırı immun cevabı baskıladığı gösterilmiştir. T hücrelerinin yanı sıra regülatör özelliği gösterilmiş olan B hücrelerinin Helicobacter-enfeksiyonundaki olası rölü yakın zamanda yapılan bir çalışmada gösterilmiştir. Helicobacter-aktive edilmiş B hücreleri Interlökin-10 (IL-10) üretimini artırmaktadır. Bu B hücrelerinin T hücreleri ile eş-reseptörler ile hücre-hücre etkileşimi ve IL-10 üretimi ile dolaylı etkileşimleri onlatı Tr-1 adı verilen IL-10 üreten T hücre gruplarına dönüştürür. Ayrıca aynı çalışmada, B hücrelerinin Toll benzeri reseptör (TLR)-2 aracılığı ve myeloid farklılaşma proteini 88 (Myd88) aracılığı ile IL-10 ürettiği gösterilmiştir. Helicobacter-aktive edilmiş B hücrelerinden  Immunoglobulin M (IgM) ve IgG2b üretildiği gösterilmiştir. Ancak Helicobacter-aktive B hücrelerinden, IL-10 üreten ya da üretmeyen gruplardan hangisinin bu antikor üretiminde rolü olduğu bilinmemektedir.  Literatürde regülatör B hücrelerinin varlığı birçok hastalık modelinde gösterilmiştir. Bunlar kolit, deneysel otoimmün ensefalomiyelit, lupus-benzeri hastalık, Leishmania major enfeksiyonu gibi farklı hastalık modelleridir. Regülatör B hücrelerinin ayırt edilebilmesi açısından tanımlanabilmeleri oldukça önemlidir. Bazı çalışmalarda, yüzey belirteçlerinin ekspresyon düzeylerine göre karakterize edilmeye çalışılmıştır. CD1dyükCD5+ grubu B10 hücreleri olarak kabul edilmiş, bu grubun arttığı kolit, kontakt hipersensitivite modeli, sistemik lupus eritematozus çalışmalarında gösterilmiştir. CD21yükCD23+ grubun varlığı da kolajen indüklenmiş artirit ve lupus modelinde gözlenmiştir. Yakın zamanda Tim-1+ IL-10 üreten B hücreleri rapor edilmiştir. Bu gibi çalışmalar, regülatör B hücrelerinin tanımlanması, onların tipik bir/birden fazla belirteç ile ayrılmalarını sağlamak için oldukça önem taşımaktadır. Regülatör hücrelerde varlığı gösterilen diğer bir sitokin ise transforme edici büyüme faktörü-β (TGF-β)’dır. Bu sitokin, immüne cevap, T hücre proliferasyonu, farklılaşma gibi birçok hücre mekanizmasında regülatör rol oynadığı bilinmektedir. TGF-β, Th1 ve Th2 tip cevabı, ayrıca sitotoksik T lenfositlerinin de aktivasyonunu baskılamaktadır. Ayrıca, naive B hücrelerinin IgA üreten hafıza hücrelerine dönüşümünde rolü vardır. TGF-β, T hücrelerinin Foxp3+ doğal regülatör T hücrelerine dönüşümünü sağlar. B hücrelerinde üretilen TGF-β’nın da varlığı bazı çalışmalarda gösterilmiştir. Sistemik lupus eritematozus, diyabet ve ayrıca, atopik dermatitde IgE’den bağımsız olarak gıda allerjisine karşı geliştirilen cevapta etkili olduğu gösterilmiştir. Helicobacter-aktive B hücrelerinin TGF-β immün cevabı bilinmemektedir. Çalışmada IL-10 üreten ve üretmeyen gruplar karşılaştırılmıştır.  Daha önce makrofajlarda ve myeloid detritik hücrelerde TLR-2 ve TLR-4 ile uyarılan hücreler, MyD88 adaptor protein aktivasyonundan sonra p38, ERK veya nuclear faktör kappa-B (NF-κB) yolakları aracılığı ile IL-10 ürettikleri gösterilmiştir. Helicobacter-aktive B hücrelerinin ürettiği IL-10’un hangi yolakla üretildiği bilinmemektedir. Belirtilen çalışmada, NF-κB aktivasyonunun rolü incelenmiştir. Bu çalışmada, Helicobacter-aktive B hücrelerinin moleküler karakterizasyonunu tanımlamak hedeflenmiştir. Helicobacter-aktive B hücreleri IL-10+ ve IL-10- gruplara ayrılmıştır. Bu gruplar fenotipik belirteçlerinin analizi için kullanılmıştır. Daha önce belirtilen CD1d-CD5 ve CD21-CD23 yüzey moleküllerinin ekpresyonları, bu belirteçlere özgü antikorlar kullanılarak flürosan bir molekülle işaretlenmiş, sonuçlar akım sitometri ile analiz edilmiştir.  Buna göre, IL-10 üreten hücrelerin yaklaşık olarak %55’i CD1d+CD5+ ve %60’ı CD21+CD23+ bulunmuştur. IL-10- B hücrelerinin ise yaklaşık %8-10 kadarı CD1d+CD5+ veya CD21+CD23+ olarak bulunmuştur.  Antikor salınımları hakkında da bilgi edinmek adına, IL-10 üretimlerine göre ayrılan bu iki grup antikor profilleme ELIZA’sı yardımı ile analiz edilmiştir. Daha önce gösterilen Helicobacter-aktive B hücrelerinden IgM ve IgG2b salınımının daha çok IL-10 üretmeyen grup tarafından yapıldığı görülmüştür. Diğer antikorların salınımı da bu hücrelerde mevcut değildir. Helicobacter-aktive IL-10 üreten B hücrelerinden  ise herhangi bir antikor salınımı gerçekleşmemiştir.  Diğer bir regülatör sitokin olan TGF-β’nın belirtilen IL-10 üreten ve üretmeyen B hücrelerinde ekspresyonunun ve onlardan salınımın analizi yapılmıştır. TGF-β üretimleri gerçek zamanlı PZR kullanılarak gerçekleştirilmiştir. Salınan TGF-β miktarları ise ELIZA yöntemi ile tayin edilmiştir. Sonuçlara göre, TGF-β üretimi IL-10- B hücreleri tarafından gerçekleşmektedir. Helicobacter-aktive IL-10 üreten B hücreleri neredeyse hiç TGF-β eksprese etmemiş ve üretmemiştir. IL-10 üretimlerinde olası sinyal yolaklarından NF-κB p65 yolağı incelenmiştir. Aktive olduğunda sitoplazmadan çekirdeğe geçen bu alt birim, immunoflorasan boyama ile analiz edilmiştir. Helicobacter felis (H. f.) ile muamele edilmiş B hücreleri, herhangi bir muameleye maruz kalmamış kontrol B hücreleri ile benzer sonuç göstermiştir. Helicobacter varlığı herhangi bir aktivasyona sebep olmamıştır. Bunu desteklemek için NF-κB inhibitörü varlığında H. f . ile muamele edilmiş ve edilmemiş B hücreleri karşılaştırılmıştır. Daha sonra, IL-10 üretim miktarlarına ELIZA yöntemi ile bakılmıştır. NF-κB inhibitörü varlığında üretilen IL-10 miktarları arasında bir fark gözlenmemiştir. IL-10 aktivasyon yolağının NF-κB p65 yolağı olmadığı düşünülmektedir.  Sonuç olarak, Helicobacter-aktive IL-10 üreten hücreler çoğunlukla CD1d+CD5+ ve CD21+CD23+ pozitif bulunurken, IL-10- hücreler IgM ve IgG2b, ve de TGF-β üreten hücreler olarak gözlenmiştir. Salınan bu IL-10’un üretiminde NF-κB p65 yolağının bir etkisi olmadığı gözlenmiştir.
Helicobacter pylori (H. pylori) is a gram negative, microaerophilic bacterium which is localized in the stomach. Around %50 of individuals are infected with H. pylori in the world. However, the percentage of prevalence goes up to 80% or more in developing countries compared to the developed countries where it is around 40% or less. Most of infected individuals remain asymptomatic. On the other hand, some of infected people may develop gastric malignancies such as gastric atrophy, intestinal metaplasia, dysplasia and it may possibly progress to gastric adenocarcinoma.  H. pylori can exist for years in a dynamic equilibrium with its host. In order to achieve this, H. pylori uses its virulence factors. In order to survive under acidic pH of stomach, they produce urease enzyme to neutralize acidity. Also, its cytotoxin-associated gene (Cag) – pathogenicity island (PAI) encodes type IV secretion system. Cag-PAI helps to translocate one of the main virulence factors, CagA, into host cells. Another virulence factor is vacuolating gene A (VacA), which interacts with host cell to manipulate it, activate immune system, disrupt cell-to-cell junctions etc. Outer membrane proteins are necessary to adhere host cells.   In mouse studies, Helicobacter felis (H. felis) is mainly used because it is more immunogenic than H.pylori in mice. It has been shown that Helicobacter infected C57BL/6 mice had gastric atrophy and lost specialized cells. These mice also showed decreased level of colonization whereas increased level of a T helper 1 (Th1) cell driven pro-inflammatory cytokine, interferon gamma-γ (IFN-γ). Even if there is high inflammation after Helicobacter infection, most of infected individuals stay asymptomatic. It indicates presence of some regulatory mechanisms, which limits high pathology formation. It was shown that Foxp3+ natural regulatory T cells (Tregs) have a role in repression of the immune response against H. pylori. This suppressive effect leads to chronic gastric infection and inflammation. In addition to Tregs, a subset of B cells has been recently shown to have a role in immune regulation against Helicobacter infection in mice models. These Helicobacter-activated B cells (Hact-B cells) produce interleukin-10 (IL-10) through Toll-like receptor-2 (TLR-2) and MyD88 signaling. These cells were found to interact with T cells through co-receptors. Therefore, they lead the conversion of T cells into IL-10 producing Tr-1 type cells. These B cells were also shown to produce IgM and IgG2b antibodies. However, it is still not known whether Helicobacter-activated IL-10+ or IL-10- B cell subsets are the source of produced antibodies.  In different mouse autoimmune disease and infection models, the presence of functional regulatory B cell subsets has been identified for their phenotypic characteristics. Different groups described B cell subsets with regulatory roles. CD1d+CD5+ regulatory B cells, which are named as B10 cells, were found in colitis, contact hypersensitivity and systemic lupus erythematosus mice models. The other subset of regulatory B cells was CD21hiCD23+ B cells. This subset was shown in collagen-induced arthritis and lupus model. Recently, Tim-1+ regulatory B cells were shown to produce IL-10. However, it is not known whether these subsets are present in IL-10 producing Hact-B cells.  Besides IL-10, transforming growth factor-β (TGF- β), another cytokine has been shown to suppress immune response. TGF-β is found to be responsible on cell proliferation, differentiation and immune regulation. TGF- β induce T cells to become natural Foxp3+ Treg cells. Also, it has a function on inhibition of Th1, Th2 and cytotoxic T lymphocytes. It helps for the conversion of naïve IgM+IgD+ B cell into IgA producing memory B cell. As it has been shown in T cells, B cells also produce TGF-β. These TGF- β producing B cells were named as Br3 cells. These regulatory B cells were reported in different disease models such as systemic lupus erythematosus, diabetes, non-IgE mediated food allergy in atopic dermatitis. However, there is not any knowledge about TGF-β expression from Helicobacter-activated B cells. In this study, IL-10+ and IL-10- subsets were compared for TGF-β relative expression and production. IL-10 is found to be produced by monocytes and myeloid dendritic cells through different signaling pathways. Induction of Toll-like receptor-2 (TLR-2) or TLR-4 with their ligands may lead to p38, extracellular-signal-regulated kinase (ERK) or nuclear factor kappa B (NF-κB) activation in a myeloid differentiation primary response gene-88 (MyD88)-dependent manner. Nuclear factor kappa B (NF-κB) is one of transcription factors, which has a role in immune response against infection, proliferation, differentiation and survival. This pathway can be activated through canonical or non-canonical ways. In previous work, Helicobacter-activated B cells were identified as TLR-2 and MyD88 dependent for production of IL-10. However, the role of NF-κB pathway on downstream regulation of Helicobacter–activated B cells through TLR-2 and MyD88 needs to be understood.  Therefore, in our project we first aimed to characterize Hact-Bregs in more detail. Helicobacter-activated B cells were enriched as IL-10+ and IL-10- B cells. Previously reported phenotypic markers of IL-10 producing regulatory B cells were characterized in our B cell. Hact IL-10+ and IL-10- B cells were analyzed by flow cytometry for CD1d-CD5 and CD21-CD23 double staining. Our data suggests that around 55% of Helicobacter-activated IL-10 producing B cells are CD1d+CD5+ and 60% are CD21+CD23+. Only 8-10 % of IL-10 negative subset of Helicobacter-activated B cells are expressing either CD1d+CD5+ or CD21+CD23+.  Moreover, antibody production levels of Helicobacter-activated IL-10+ and IL-10- B cells were measured with antibody isotyping ELISA. IgM and IgG2b antibodies, which have been shown to be produced by Hact - B cells, are produced only by Helicobacter-activated IL-10- B cell subset but not from IL-10+ B cells.  Similarly, another defined cytokine with a regulatory role, TGF- β was examined for Helicobacter-activated B cells. TGF-β was examined with Real - time PCR for its relative expression level. Moreover, secreted level of TGF- β was analyzed with ELISA. It is found TGF- β is produced from Hact B cell population. Also, TGF- β was only produced from Helicobacter-activated IL-10- B cells but not from IL-10+ B cells.  Another aim of the experiment was to assess the role of NF-κB canonical pathway on the induction of IL-10 expression from Hact B cells. In order to understand NF-κB activation in Helicobacter-activated B cells, translocation of NF-κB p65 subunit from cytoplasm to nucleus was analyzed with staining of NF-κB in immunofluorescence assay. Also, THP-1 cell line was used to assess NF-κB activation through LPS induction and inhibition of NF-κB pathway through NF-κB inhibitor PTDC. After that, inhibition of NF-κB pathway was used to understand its effect on IL-10 secretion from Helicobacter-activated B cells. IL-10 secretion levels were analyzed with IL-10 specific ELISA. We showed that NF-κB canonical pathway may not be the responsible of inducing IL-10 expression from Helicobacter-activated B cells.  Taken together this data suggests that Hact IL-10 producing B cells are mostly CD1d+CD5+ or CD21+CD23+ phenotype. On the other hand, Helicobacter-activated IL-10- B cells secrete IgM and IgG2b antibodies and TGF-β, as well. However, IL-10- B cells are not the source of these antibodies and TGF-β production. Furthermore, it has been suggested that NF-κB p65 has not a role on IL-10 production from Helicobacter-activated B cells.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2014
Anahtar kelimeler
Helicobacter pylori, IL-10, B hücresi, Helicobacter pylori, IL-10, B cells
Alıntı