Ticari Hidroksiapatit Esaslı Üç Bileşenli Kompozit Biyomalzemelerin Üretimi Ve Karakterizasyonu
Ticari Hidroksiapatit Esaslı Üç Bileşenli Kompozit Biyomalzemelerin Üretimi Ve Karakterizasyonu
Dosyalar
Tarih
2014-09-26
Yazarlar
Akyıldız, Ezgi
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
İnsan vücudunda bulunan doku, organ ve eklemlerdeki kayıp ya da eksikliklerin giderilmesi ve tedavi amacıyla metalik, polimerik, seramik veya kompozit malzemelerden üretilebilen biyomalzemelerin kullanımı üstün üretim teknikleri ve malzemelerin geliştirilmesi ile gün geçtikçe artmaktadır. Biyomalzemeler vücut içerisinde yerleştirildikten sonra uygulandıkları bölgeye göre sürekli veya periyodik olarak yüklere maruz kalarak vücut sıvısı ile temas etmektedir. Dolayısıyla bir biyomalzemeden beklenen en önemli özellik biyouyumlu olması; malzemenin çevrelendiği doku, organ ve eklemlerde istenmeyen bir reaksiyona sebep olmamasıdır. Bunun dışında üstün korozyon direnci, uygulama alanına uygun elastik modül, yoğunluk, çekme ve basma mukavemeti, ısıl dayanım, yorulma direnci ve kimi uygulamalar için ise uygun optik özellikler aranmaktadır. Ayrıca vücut içerisine yerleştirildiğinde, malzeme-doku arayüzeyinde kendine özgü biyolojik bağ oluşturabilme olarak tanımlanan biyoaktivite özelliği de son teknoloji biyomalzemelerden beklenmektedir. Metalik, polimerik, seramik ve kompozit biyomalzemeler arasında ortopedik uygulamalarda en çok tercih edilen malzeme doğal ve yapay yollarla elde edilebilen hidroksiapatittir. Hidroksiapatit (HA) bir kalsiyum fosfat bileşiği olup kemik dokusunun inorganik yapısını oluşturmaktadır ve kimyasal formülü Ca10(PO4)6(OH)2 şeklindedir. Mekanik özellikleri zayıf olmasına karşın üstün biyolojik özellikleri HA’ nın kullanımını teşvik etmektedir. Bu çalışmada sentetik olarak elde edilmiş hidroksiapatite ağırlıkça % 10 ZrO2 eklenen malzemeye % 5 ve % 10 oranlarında MgO katılmış, 1000, 1100, 1200 ve 1300 ˚C ’ta sinterlenerek mekanik, fiziksel, mikroyapısal ve biyolojik özelliklerinin araştırılması amaçlanmıştır. Bu doğrultuda yapılan çalışmalar, X-ışınları difraktometresi (XRD) ile faz analizi, mikrosertlik ölçümü, basma mukavemeti tayini, partikül boyutu analizi, taramalı elektron mikroskobu (SEM) ile mikroyapı analizi, yoğunluk ölçümü ve in vitro biyoaktivite deneyleridir. Yapılan çalışmada hazırlanan kompozitlerin mekanik özellikleri basma testi ve sertlik ölçümleri ile, yoğunluk ölçümleri Arşimet metodu ile, mikroyapısal özellikleri taramalı elektron mikroskobu (SEM) ile, fazların belirlenmesi XRD analizi ile, biyolojik özellikleri ise in vitro biyoaktivite testi ile değerlendirilmiştir. Hazırlanan kompozitlerin ortalama partikül boyutları 9,2 (CSHA-5) ve 7,4 (CSHA-10) µm’dir. Arşimet düzeneğinden faydalanılarak yapılan yoğunluk ölçümlerinde artan sinterleme sıcaklığı ile numunelerin yoğunlukları artarken % su emme ve % porozite değerleri düşmektedir. 1000˚C’ta sinterlenen CSHA-5 numunesinin yoğunluğu 1,81 g/cm3 iken porozite miktarı % 40’tır. Su emme miktarı ise % 22’dir. 1000˚C’ta sinterlenen CSHA-10 numunesinin yoğunluğu 1,79 g/cm3 iken porozite miktarı % 41’dir. Su emme miktarı ise % 23’tür. Sinterleme sonrası yapılan XRD analizleri sonucunda CSHA-5 ve CSHA-10 kompozitlerinin 1000 ºC sıcaklıkta içerdiği fazlar; monetit (CaHPO4), dimagnezyum difosfat hegzahidrat, whitlockite (Ca3(PO4)2) ve β-trikalsiyum fosfattır. 1300 ºC sıcaklıkta sinterlenen CSHA-5 ve CSHA-10 kompozitlerinin içerdikleri fazlar ise; dimagnezyum difosfat hegzahidrat, whitlockite (Ca3(PO4)2), β-trikalsiyum fosfat ve α-trikalsiyum fosfattır. Sinterleme sonrası yapılan mikroyapı incelemeleri sonucunda ise, artan sinterleme sıcaklığı ile kompozit yapı içerisindeki tane boyutlarında artış gözlemlenmiştir. Kompozitlerin mikrosertlik değerleri artan sinterleme sıcaklığı ile artış gösterirken, yapıda meydana gelen dekompozisyondan dolayı basma mukavemetlerinde düşüş görülmüştür. Basma mukavemeti değerleri incelendiğinde en düşük basma mukavemeti 1300 ºC’ de sinterlenen CSHA-10 kompozitine aittir. En yüksek basma mukavemeti ise aynı kompozitin 1000 ºC’ de sinterlenen numunesine aittir. Mikro sertlik değerleri incelendiğinde ise, en düşük sertlik değerine sahip numune 55,80 HV ile CSHA-5 kompozitine aittir. En yüksek mikro sertlik değeri ise yine aynı numunenin 1300 ºC’de sinterlenen numuesine aittir. Yapılan XRD analizleri sonucunda kompozitlerin yapısında bulunan fazlar basma mukavemeti ve mikro sertlikteki değişimi açıklamaktadır. HA artan sıcak ile dekompoze olarak α-TCP ve β-TCP olmak üzere çift fazlı yapıya dönüşür. β-TCP mekanik ve biyolojik özellikleri itibarı ile istenen bir faz iken, α-TCP zayıf mekanik özellikleri dolayısıyla biyomalzeme bünyesinde istenmeyen bir fazdır. HA’ nın zayıf mekanik özelliklerini geliştirmek amacıyla yapıya eklenen ZrO2 bu dönüşümü hızlandırmaktadır. Aynı amaçla yapıya eklenen MgO ise HA’ nın bifazik yapıya dönüşüm sıcaklığını yükselterek istenmeyen faz olan α-TCP’ nin oluşumunu geciktirmektedir. Biyomalzeme olarak kullanılacak kompozitin basma mukavemeti değeri kullanım sırasında daha büyük önem arz ettiğinden 1000 ºC’de sinterlenmiş kompozitlerin biyoaktivite deneyine tabi tutulmasına karar verilmiştir. CSHA-5 kodlu kompozitin 1000 ºC’de sinterlendikten sonraki basma mukavemeti 88,56 MPa, CSHA-10 kompozitinin 1000 ºC’de sinterlendikten sonraki basma mukavemeti ise 103,36 MPa’dır. Sertlik değerleri ise sırası ile 55,80 HV ve 59,20 HV’dir. 28 gün boyunca 7 günlük periyodlar halinde in vitro biyoaktivite deneyine tabi tutulan CSHA-5 ve CSHA-10 komozitlerinin her ikisinin yüzeyinde de ilk 7 günün sonunda hidroksiapatit yapısının oluşmaya başladığı görülmektedir. Mekanik ve biyolojik testler sonucunda elde edilen veriler ışığında en ideal biyomalzeme olarak 1000 ºC’ de sinterlenen CSHA-10 kodlu kompozit seçilmiştir.
In medical applications, utilization of biomaterials which can be manufactured from metals, ceramics, polymers or composite materials increases day by day with the advent of advanced materials and manufacturing methods. After the implantation of a biomaterial, it is exposed to mechanical loads and body fluids continuously or periodically according to the implantation area. Hence, the most important expectancy of biomaterials is to be biocompatible; not to cause a reaction or impede natural growth of the tissue, bone and organ. Corrosion resistance, appropriate Young’s modulus, density, tensile and compression strength, thermal endurance, fatigue resistance and optical features for some specific applications are the other expected properties from biomaterials. Apart from these, bioactivity is also an expected feature from the state of the art technology biomaterials. Bioactivitiy can be defined as the ability to make a biological connection at the interface of the material which results in the generation of a bond between material and tissue. There are generally two ways to examine bioactivity of biomaterials; in vivo and in vitro. Animals are used as experiment subjects in some in vivo experiments. Bioactive materials do not only impede natural growth of tissue, organ and bones but also guides them to grow. The bond between material-tissue interface is related to the tissue type, age, healtiness, circulation of blood inside the tissue, composition and surface morphology of the implant and mechanical loads to the application area. The most bioactive materials are ceramics and glass-ceramics. To determine the bioactivity properties of a material as in vitro, simulated body fluid (SBF) is prepared and material is submerged into the fluid for certain periods. If the material was bioactive, hydroxyapatite layer would started to form on the material surface after a particular time period. The most prefered material for orthopedic applications is hydroxyapatite (HA) among bioceramics. HA is a calsium phospate compound with an empiric formula of Ca10(PO4)6(OH)2 and it is the main constituent of bone. Hydroxyapatite can be obtain both natural and synthetic methods. Although its poor mechanical properties, HA has great biocompatibility and bioactivity properties. In this study, commercial synthetic hydroxyapatite (CSHA) is reinforced by zirconium oxide (ZrO2) at the rate of % 10 and magnesium oxide (MgO) at the rate of % 5 and % 10 by weight and sintered at the temperatures of 1000, 1100, 1200 and 1300 ˚C. To investigate the mechanical, physical, micro structural and biological properties is the aim of the study. In this direction, micro hardness determination, phase analysis with XRD and determination of compression strength have been done. Characterization of microstructures by using scanning electron microscopy (SEM) technique and determination of density and in vitro bioactivity tests are also done within this framework. Composite powders were prepared by adding % 10 ZrO2 and % 5-%10 MgO to CSHA. Powders pelletized by unaxially pressing at 350 MPa in accordance with British Standard BS 7253. Pellets were sintered for 4 hours the temperatures of 1000, 1100, 1200, 1300 ºC (+5 °C min-1). Microstructural characterization was carried out by scanning electron microscopy (SEM-Hitachi TM-1000), Phase analysis of samples were conducted by X-Ray diffraction (Bruker D8 Advance) with CuKα radiation, in the 10°- 90° range at a scan speed of 2°/min. Densities of the samples were determined by Archimedes method. Vickers microhardness testing system (HMV Shimadzu) was used for hardness measurements, 200 g. load for 15 s. Universal Testing machine (Shimadzu) was used to determine comprassion strengths of the samples at a crosshead speed of 3 mm/min. In vitro bioactivity tests were done for 28 days with simulated body fluid (SBF). Phase (XRD) analysis and mikrostructural examination were done after in vitro bioactivity test. Avarage particle size of the CSHA-5 and CSHA-10 composites are 9,2 and 7,4 µm respectively. Density of the samples increased with the sintering temperature while % water absorption and % porosity decreased expectedly. Density of CSHA-5 and CSHA-10 samples incraesed from 1,817 to 2,05 g/cm3 and 1,79 to 2,03 g/cm3 respectively. Porosity of the samples were decreased while grain sizes increased with increasing sintering temperature. The highest porosity value (% 41,83) was obtained in CSHA-10 composite sintered at 1000 ºC, the lowest porosity value (% 32,90) was obtained in CSHA- 5 sintered at 1300 ºC. The highest relative density value was obtained in CSHA-5 composite sintered at 1300 ºC. The lowest porosity value was obtained in CSHA-5 composite sintered at 1300 °C. With increasing sintering temperature, hydroxyapatite decomposed to biphasic structure which contains alpha and beta tri calcium phosphate. The amount of the alpha phase was increased with increasing sintering temperatures. Beta phase of tri calcium phosphate is a biomaterial that is used often as raw material of orthopedic implants with its ideal mechanical properties. On the other hand, alpha phase of tri calcium phosphate is a porous material with poor mechanical properties what makes it an undesired phase. Zirconia accelerate this decomposition process while magnesium oxide increases the decomposition temperature which means decelerates the decomposition process. Ideal compression strenght is the major property which a biomaterial should have. Which is why, CHSA-5 and CSHA-10 composites sintered at 1000 ºC were chosen for bioactivity tests. Compression strenghts of the CSHA-5 and CSHA-10 composites sintered at 1000 ºC is 88,56 MPa and 103,36 MPa respectively. Vickers micro hardness value of the composites are 55,80 HV (CSHA-5) and 59,20 HV (CSHA-10). The highest compressive strenght value (103,36 MPa) was obtained in CSHA-10 composite sintered at 1000 °C and the lowest compressive strength value (73,32 MPa) obtained in CSHA-5 composite sintered at 1200 °C. In vitro bioactivity tests were applied to the CSHA-5 and CSHA-10 samples sintered at 1000 ºC for 28 days. Simulated body fluid (SBF) was prepared according to Kokubo’s recipe, samples were pluged into the SBF and held for 7 days period at 36,5 ºC. After 28 days, phase analysis and microstructural examination was done to the samples to determine bioactivity properties. According to SEM images and phase analysis by XRD, apatite formation started on the samples from the first week (7 days) of the test. In the light of these information, the most appropriate biomaterial candidate ise CSHA-10 composite sintered at 1000 ºC.
In medical applications, utilization of biomaterials which can be manufactured from metals, ceramics, polymers or composite materials increases day by day with the advent of advanced materials and manufacturing methods. After the implantation of a biomaterial, it is exposed to mechanical loads and body fluids continuously or periodically according to the implantation area. Hence, the most important expectancy of biomaterials is to be biocompatible; not to cause a reaction or impede natural growth of the tissue, bone and organ. Corrosion resistance, appropriate Young’s modulus, density, tensile and compression strength, thermal endurance, fatigue resistance and optical features for some specific applications are the other expected properties from biomaterials. Apart from these, bioactivity is also an expected feature from the state of the art technology biomaterials. Bioactivitiy can be defined as the ability to make a biological connection at the interface of the material which results in the generation of a bond between material and tissue. There are generally two ways to examine bioactivity of biomaterials; in vivo and in vitro. Animals are used as experiment subjects in some in vivo experiments. Bioactive materials do not only impede natural growth of tissue, organ and bones but also guides them to grow. The bond between material-tissue interface is related to the tissue type, age, healtiness, circulation of blood inside the tissue, composition and surface morphology of the implant and mechanical loads to the application area. The most bioactive materials are ceramics and glass-ceramics. To determine the bioactivity properties of a material as in vitro, simulated body fluid (SBF) is prepared and material is submerged into the fluid for certain periods. If the material was bioactive, hydroxyapatite layer would started to form on the material surface after a particular time period. The most prefered material for orthopedic applications is hydroxyapatite (HA) among bioceramics. HA is a calsium phospate compound with an empiric formula of Ca10(PO4)6(OH)2 and it is the main constituent of bone. Hydroxyapatite can be obtain both natural and synthetic methods. Although its poor mechanical properties, HA has great biocompatibility and bioactivity properties. In this study, commercial synthetic hydroxyapatite (CSHA) is reinforced by zirconium oxide (ZrO2) at the rate of % 10 and magnesium oxide (MgO) at the rate of % 5 and % 10 by weight and sintered at the temperatures of 1000, 1100, 1200 and 1300 ˚C. To investigate the mechanical, physical, micro structural and biological properties is the aim of the study. In this direction, micro hardness determination, phase analysis with XRD and determination of compression strength have been done. Characterization of microstructures by using scanning electron microscopy (SEM) technique and determination of density and in vitro bioactivity tests are also done within this framework. Composite powders were prepared by adding % 10 ZrO2 and % 5-%10 MgO to CSHA. Powders pelletized by unaxially pressing at 350 MPa in accordance with British Standard BS 7253. Pellets were sintered for 4 hours the temperatures of 1000, 1100, 1200, 1300 ºC (+5 °C min-1). Microstructural characterization was carried out by scanning electron microscopy (SEM-Hitachi TM-1000), Phase analysis of samples were conducted by X-Ray diffraction (Bruker D8 Advance) with CuKα radiation, in the 10°- 90° range at a scan speed of 2°/min. Densities of the samples were determined by Archimedes method. Vickers microhardness testing system (HMV Shimadzu) was used for hardness measurements, 200 g. load for 15 s. Universal Testing machine (Shimadzu) was used to determine comprassion strengths of the samples at a crosshead speed of 3 mm/min. In vitro bioactivity tests were done for 28 days with simulated body fluid (SBF). Phase (XRD) analysis and mikrostructural examination were done after in vitro bioactivity test. Avarage particle size of the CSHA-5 and CSHA-10 composites are 9,2 and 7,4 µm respectively. Density of the samples increased with the sintering temperature while % water absorption and % porosity decreased expectedly. Density of CSHA-5 and CSHA-10 samples incraesed from 1,817 to 2,05 g/cm3 and 1,79 to 2,03 g/cm3 respectively. Porosity of the samples were decreased while grain sizes increased with increasing sintering temperature. The highest porosity value (% 41,83) was obtained in CSHA-10 composite sintered at 1000 ºC, the lowest porosity value (% 32,90) was obtained in CSHA- 5 sintered at 1300 ºC. The highest relative density value was obtained in CSHA-5 composite sintered at 1300 ºC. The lowest porosity value was obtained in CSHA-5 composite sintered at 1300 °C. With increasing sintering temperature, hydroxyapatite decomposed to biphasic structure which contains alpha and beta tri calcium phosphate. The amount of the alpha phase was increased with increasing sintering temperatures. Beta phase of tri calcium phosphate is a biomaterial that is used often as raw material of orthopedic implants with its ideal mechanical properties. On the other hand, alpha phase of tri calcium phosphate is a porous material with poor mechanical properties what makes it an undesired phase. Zirconia accelerate this decomposition process while magnesium oxide increases the decomposition temperature which means decelerates the decomposition process. Ideal compression strenght is the major property which a biomaterial should have. Which is why, CHSA-5 and CSHA-10 composites sintered at 1000 ºC were chosen for bioactivity tests. Compression strenghts of the CSHA-5 and CSHA-10 composites sintered at 1000 ºC is 88,56 MPa and 103,36 MPa respectively. Vickers micro hardness value of the composites are 55,80 HV (CSHA-5) and 59,20 HV (CSHA-10). The highest compressive strenght value (103,36 MPa) was obtained in CSHA-10 composite sintered at 1000 °C and the lowest compressive strength value (73,32 MPa) obtained in CSHA-5 composite sintered at 1200 °C. In vitro bioactivity tests were applied to the CSHA-5 and CSHA-10 samples sintered at 1000 ºC for 28 days. Simulated body fluid (SBF) was prepared according to Kokubo’s recipe, samples were pluged into the SBF and held for 7 days period at 36,5 ºC. After 28 days, phase analysis and microstructural examination was done to the samples to determine bioactivity properties. According to SEM images and phase analysis by XRD, apatite formation started on the samples from the first week (7 days) of the test. In the light of these information, the most appropriate biomaterial candidate ise CSHA-10 composite sintered at 1000 ºC.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2014
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2014
Anahtar kelimeler
hidroksiapatit,
zirkonya,
magnezyum oksit,
seramik,
biyomalzeme.,
hydroxyapatite,
zirconia,
magnesium oxide,
ceramic,
biomaterial