Yırtılabilir zar modeli yardımıyla görüntü sıkıştırma

dc.contributor.advisor Gökmen, Muhittin
dc.contributor.author Gençata, Ayşegül
dc.contributor.authorID 46451
dc.contributor.department Kontrol ve Otomasyon Mühendisliği tr_TR
dc.date.accessioned 2023-03-16T05:59:26Z
dc.date.available 2023-03-16T05:59:26Z
dc.date.issued 1995
dc.description Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 1995 tr_TR
dc.description.abstract The digital representation of an image requires a very large number of bits. Pictorial data is produced by sampling in space and quantizing in brightness analog scenes. The sampling step size is usually chosen small enough to avoid interpolation before display and relies on the integration ability of the human visual system. A digital image is an N by N array of integer numbers ör picture elements (pixels). The goal of image coding is to reduce (to compress), as much as possible, the number of bits necessary to represent and reconstruct a faithful duplicate of the original picture. Any data originated from an image, are not random. Adjacent pixels have similar gray values,this is an important spatial correlation. If this correlation is exploited in an appropriate way, the number of N2B bits required for represen¬ tation of a digital image can be reduced. The set of techniques based on this classical view of image coding problem is called "first generation" [1]. By using information theory various alternatives were proposed, these coding techniques reached a compression ratio at about 10 to 1. This certainly does not mean that the upper bound given by the entropy of the source has also been reached. First, the entropy of an image is unknown and depends heavily on the model used, and second, information theory is not customarily used to take into account what the human eye sees and how it sees. The very end of almost every image processing system is the human eye. Although our visual system is by far the best image processing system öne can think of, it is also far from being perfect. If the coding scheme is matched to the human visual system and tries to imitate its functions, high compressions can be expected. A few methods designed with these approaches give encouraging >+l) _ -(") " dE T duitj is the relaxation parameter and w G [0, 2]. n denotes the iteration number in increasing order. By taking derivatives and rearranging we obtain, u\n7L> - An) - A2 (141 [4wt-,j - (ui-ij + ui+ltj + Uij-i. + Uitj+i)} where /3ij = 0, and *4j = ^»'.i where fcj = 1. During the SOR iterations, pre-existing data should not be modified and iterative calculations must be performed only for non-existing data. If goal is to construct surface from sparse data, it is not important whether the data is at an edge location or in the middle of a smooth region. The important thing is to locate and use available data for reconstruction. The molecule of a membrane has a structure with five elements. This molecule has its center and the four connected components which are only one pixel apart. This means that any molecule cannot contain pixels in different regions separated by edges, each pixel in membrane functional is enough for reconstruction. The method is applied to various synthetic and real images. The compression ratio for syntetic images is approximately 40:1 and for real images approximately 20:1. Xlll ABSTRACT IMAGE COMPRESSION BY USING WEAK MEMBRANE MODEL The digital representation of an image requires a very large number of bits. Pictorial data is produced by sampling in space and quantizing in brightness analog scenes. The sampling step size is usually chosen small enough to avoid interpolation before display and relies on the integration ability of the human visual system. A digital image is an N by N array of integer numbers ör picture elements (pixels). The goal of image coding is to reduce (to compress), as much as possible, the number of bits necessary to represent and reconstruct a faithful duplicate of the original picture. Any data originated from an image, are not random. Adjacent pixels have similar gray values,this is an important spatial correlation. If this correlation is exploited in an appropriate way, the number of N2B bits required for represen¬ tation of a digital image can be reduced. The set of techniques based on this classical view of image coding problem is called "first generation" [1]. By using information theory various alternatives were proposed, these coding techniques reached a compression ratio at about 10 to 1. This certainly does not mean that the upper bound given by the entropy of the source has also been reached. First, the entropy of an image is unknown and depends heavily on the model used, and second, information theory is not customarily used to take into account what the human eye sees and how it sees. The very end of almost every image processing system is the human eye. Although our visual system is by far the best image processing system öne can think of, it is also far from being perfect. If the coding scheme is matched to the human visual system and tries to imitate its functions, high compressions can be expected. A few methods designed with these approaches give encouraging >+l) _ -(") " dE T duitj is the relaxation parameter and w G [0, 2]. n denotes the iteration number in increasing order. By taking derivatives and rearranging we obtain, u\n7L> - An) - A2 (141 [4wt-,j - (ui-ij + ui+ltj + Uij-i. + Uitj+i)} where /3ij = 0, and *4j = ^»'.i where fcj = 1. During the SOR iterations, pre-existing data should not be modified and iterative calculations must be performed only for non-existing data. If goal is to construct surface from sparse data, it is not important whether the data is at an edge location or in the middle of a smooth region. The important thing is to locate and use available data for reconstruction. The molecule of a membrane has a structure with five elements. This molecule has its center and the four connected components which are only one pixel apart. This means that any molecule cannot contain pixels in different regions separated by edges, each pixel in membrane functional is enough for reconstruction. The method is applied to various synthetic and real images. The compression ratio for syntetic images is approximately 40:1 and for real images approximately 20:1. Xlll ABSTRACT IMAGE COMPRESSION BY USING WEAK MEMBRANE MODEL The digital representation of an image requires a very large number of bits. Pictorial data is produced by sampling in space and quantizing in brightness analog scenes. The sampling step size is usually chosen small enough to avoid interpolation before display and relies on the integration ability of the human visual system. A digital image is an N by N array of integer numbers ör picture elements (pixels). The goal of image coding is to reduce (to compress), as much as possible, the number of bits necessary to represent and reconstruct a faithful duplicate of the original picture. Any data originated from an image, are not random. Adjacent pixels have similar gray values,this is an important spatial correlation. If this correlation is exploited in an appropriate way, the number of N2B bits required for represen¬ tation of a digital image can be reduced. The set of techniques based on this classical view of image coding problem is called "first generation" [1]. By using information theory various alternatives were proposed, these coding techniques reached a compression ratio at about 10 to 1. This certainly does not mean that the upper bound given by the entropy of the source has also been reached. First, the entropy of an image is unknown and depends heavily on the model used, and second, information theory is not customarily used to take into account what the human eye sees and how it sees. The very end of almost every image processing system is the human eye. Although our visual system is by far the best image processing system öne can think of, it is also far from being perfect. If the coding scheme is matched to the human visual system and tries to imitate its functions, high compressions can be expected. A few methods designed with these approaches give encouraging >+l) _ -(") " dE T duitj is the relaxation parameter and w G [0, 2]. n denotes the iteration number in increasing order. By taking derivatives and rearranging we obtain, u\n7L> - An) - A2 (141 [4wt-,j - (ui-ij + ui+ltj + Uij-i. + Uitj+i)} where /3ij = 0, and *4j = ^»'.i where fcj = 1. During the SOR iterations, pre-existing data should not be modified and iterative calculations must be performed only for non-existing data. If goal is to construct surface from sparse data, it is not important whether the data is at an edge location or in the middle of a smooth region. The important thing is to locate and use available data for reconstruction. The molecule of a membrane has a structure with five elements. This molecule has its center and the four connected components which are only one pixel apart. This means that any molecule cannot contain pixels in different regions separated by edges, each pixel in membrane functional is enough for reconstruction. The method is applied to various synthetic and real images. The compression ratio for syntetic images is approximately 40:1 and for real images approximately 20:1. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.identifier.uri http://hdl.handle.net/11527/23495
dc.language.iso tr
dc.publisher Fen Bilimleri Enstitüsü tr_TR
dc.rights Kurumsal arşive yüklenen tüm eserler telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights All works uploaded to the institutional repository are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject Bilgisayar ve Kontrol tr_TR
dc.subject Görüntü sıkıştırma tr_TR
dc.subject Computer Science and Control en_US
dc.subject Image compression en_US
dc.title Yırtılabilir zar modeli yardımıyla görüntü sıkıştırma tr_TR
dc.title.alternative Image compression by using weak membrane model en_US
dc.type Master Thesis tr_TR
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
46451.pdf
Boyut:
4.71 MB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.16 KB
Format:
Plain Text
Açıklama