Ticari İnert Cam Katkılı Hidroksiapatit-alümina Ve Hidroksiapatit-zirkonya Kompozitlerinin Üretimi Ve Karakterizasyonu
Ticari İnert Cam Katkılı Hidroksiapatit-alümina Ve Hidroksiapatit-zirkonya Kompozitlerinin Üretimi Ve Karakterizasyonu
Dosyalar
Tarih
2014-06-27
Yazarlar
Bulut, Berrak
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Biyomalzemeler, insan vücudundaki canlı dokunun işlevlerini yerine getirmek veya desteklemek amacıyla kullanılan doğal ya da sentetik malzemelerdir. Hidroksiapatit (HA), biyomedikal alanda yaygın olarak kullanılan bir kalsiyum fosfat bileşiği olup, Ca10(PO4)6(OH)2 formülü ile gösterilir. Hidroksiapatit, implant etrafındaki kemik büyümesini hızlandırdığı için kemik onarımında kullanılan popüler bir biyoseramik malzemedir. Hidroksiapatitin biyouyumlu ve biyoaktif bir malzeme olmasına karşın, yetersiz mekanik özellikler göstermesi implant malzemesi olarak kullanımını kısıtlamaktadır. Hidroksiapatitin mekanik özelliklerini iyileştirmek amacıyla çeşitli yöntemler uygulanmaktadır. Bu yöntemlerden biri, biyouyumluluktan ödün vermeden mukavemet ve tokluğu arttıran HA bazlı kompozitlerin üretimidir. Yüksek yoğunluk ve yüksek saflığa sahip alümina, korozyon direnci, yüksek mukavemet ve iyi biyouyumluluk özelliklerinden dolayı ortopedik uygulamalarda yaygın kullanıma sahiptir. Zirkonya, mekanik özellikler açısından birçok metalik malzeme ile benzer özellikler göstermektedir. Bu özelliğinden dolayı zirkonya biyomedikal alanda yaygın olarak kullanılmaktadır. Biyocamlar yüksek biyoaktiviteye sahip seramiklerdir ve kemik ile implant arasında kuvvetli bir bağ oluşumuna önemli katkısı olan bir biyomalzemelerdir. Bu çalışmada amaç, ağırlıkça % 5 ve 10 oranlarında ticari inert cam (CIG) katkılı HA-ZrO2 ve HA-Al2O3 kompozitlerin mikroyapı ve mekanik özelliklerinin belirlenmesidir. Bu çalışmada farklı bileşimde kompozitler üretilmiş ve üretilen kompozitler 1000-1300 oC arasındaki farklı sıcaklıklarda 4 saat sinterlenmiştir. Sinterlenen numunelerin yoğunlukları Arşimet metodu ile, mekanik özellikleri basma testi ve sertlik ölçümleri ile, mikroyapısal özellikleri optik mikroskobu ve taramalı elektron mikroskobu (SEM) ile, oluşan fazlar XRD analizi ile, in vitro biyoaktivite testleri ile biyoaktiviteleri belirlenmiştir. Bu çalışma sonucunda, optimum cam katkısının kompozitlerin biyoaktifliğini olumlu yönde etkilediği ve HA-Al2O3 kompozit türünün biyoaktivite ve mekanik özelliklerinin HA-ZrO2 kompozit türüne göre daha düşük olduğu tespit edilmiştir. Yapılan çalışmada en ideal kompozit türü olarak 1200 °C sinterlenen HA-ZrO2- ağ. %5 CIG katkılı kompozit seçilmiştir.
Biomaterials can be derived either from nature or synthesized in the laboratory using a variety of chemical approaches utilizing metallic components, polymers, ceramics or composite materials. They are often used and/or adapted for a medical application to comprise whole or part of a living structure. Hydroxyapatite (HA),which has a chemical formula of Ca10(PO4)6(OH)2, is one of the most widely used biomaterials for orthopedic and dental applications because of its superiror bioactivity. On the other hand, its brittleness and insufficient mechanical properties restrict the application areas of this material. Mechanical properties of HA can be improved by several methods. One of these methods to strengthen the HA is production of composite materials with different types of reinforcement. Zirconia (ZrO2) and Alumina (Al2O3) are bioinert materials, have been widely used as a reinforcing agent for HA. Alumina that is called as a nearly inert ceramics is mostly used for implant production. An alumina has characteristics of high hardness and high abrasion resistance. High abrasion resistance, high strength and chemical inertness of alumina have made it preferred ceramic for dental and bone implants. Zirconia which is one of the most important ceramic materials has been used over a century. Zirconia is a biomaterial that has a bright future because of its high mechanical strength and fracture toughness. Bioactive glasses are a group of surface reactive glass-ceramic biomaterials and include the original bioactive glass. The biocompatibility of these glasses has led them to be investigated extensively for use as implant materials in the human body to repair and replace diseased or damaged bone. Bioglass bonds with bone rapidly and also stimulates bone growth away from the bone–implant interface. The aim of this study is to determine the microstructural and mechanical properties of HA-ZrO2 and HA-Al2O3 composites with the addition of 5 and 10 wt% commercial inert glass (CIG). The green samples were produced at 350 MPa. Then, they were sintered at between 1000-1300°C during 4 hours. The samples were analyzed by SEM ( Scanning electron microscopy ) to determine microstructural properties, phase analysis were done by X-ray diffraction analyses (XRD), density test were performed by Archimedes method, compression tests and hardness measurements were performed as mechanical tests. The bioactivity and biocompatibility studies were executed. In conclusion, the optimum CIG content was provided an increase of mechanical properties and bioactivities of the composites. The mechanical properties and bioactivities of HA-Al2O3 composites have been found lower than HA-ZrO2 composites. In this study, the ideal composite is selected as HA-ZrO2- 5 wt% composite sintered at 1200 °C.
Biomaterials can be derived either from nature or synthesized in the laboratory using a variety of chemical approaches utilizing metallic components, polymers, ceramics or composite materials. They are often used and/or adapted for a medical application to comprise whole or part of a living structure. Hydroxyapatite (HA),which has a chemical formula of Ca10(PO4)6(OH)2, is one of the most widely used biomaterials for orthopedic and dental applications because of its superiror bioactivity. On the other hand, its brittleness and insufficient mechanical properties restrict the application areas of this material. Mechanical properties of HA can be improved by several methods. One of these methods to strengthen the HA is production of composite materials with different types of reinforcement. Zirconia (ZrO2) and Alumina (Al2O3) are bioinert materials, have been widely used as a reinforcing agent for HA. Alumina that is called as a nearly inert ceramics is mostly used for implant production. An alumina has characteristics of high hardness and high abrasion resistance. High abrasion resistance, high strength and chemical inertness of alumina have made it preferred ceramic for dental and bone implants. Zirconia which is one of the most important ceramic materials has been used over a century. Zirconia is a biomaterial that has a bright future because of its high mechanical strength and fracture toughness. Bioactive glasses are a group of surface reactive glass-ceramic biomaterials and include the original bioactive glass. The biocompatibility of these glasses has led them to be investigated extensively for use as implant materials in the human body to repair and replace diseased or damaged bone. Bioglass bonds with bone rapidly and also stimulates bone growth away from the bone–implant interface. The aim of this study is to determine the microstructural and mechanical properties of HA-ZrO2 and HA-Al2O3 composites with the addition of 5 and 10 wt% commercial inert glass (CIG). The green samples were produced at 350 MPa. Then, they were sintered at between 1000-1300°C during 4 hours. The samples were analyzed by SEM ( Scanning electron microscopy ) to determine microstructural properties, phase analysis were done by X-ray diffraction analyses (XRD), density test were performed by Archimedes method, compression tests and hardness measurements were performed as mechanical tests. The bioactivity and biocompatibility studies were executed. In conclusion, the optimum CIG content was provided an increase of mechanical properties and bioactivities of the composites. The mechanical properties and bioactivities of HA-Al2O3 composites have been found lower than HA-ZrO2 composites. In this study, the ideal composite is selected as HA-ZrO2- 5 wt% composite sintered at 1200 °C.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2014
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2014
Anahtar kelimeler
Hidroksiapatit,
Zro2,
Al2O3,
Ticari İnert Cam,
HA Kompozitleri,
Biyoaktivite.,
Hydroxyapatite,
Zro2,
Al2O3,
Commercial Inert Glass,
Composites,
Bioactivity.