Malzeme Ve Medikal Uygulamalar İçin Gen Mühendisliği Yoluyla Peptid (gepı)-protein Hibritlerin Oluşturulması
Malzeme Ve Medikal Uygulamalar İçin Gen Mühendisliği Yoluyla Peptid (gepı)-protein Hibritlerin Oluşturulması
Dosyalar
Tarih
2012-03-26
Yazarlar
Şahin, Deniz
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Doğada, milyonlarca yıl süren evrimsel süreçler sonucunda, lipidler, polisakkaritler ya da proteinler gibi biyomakromoleküller yüksek seviyede sofistike olmuş sistemlerin oluşmasını sağlamıştır. Oluşan bu sistemlerle canlılar, zorlu çevre şartlarına daha iyi uyum sağlamanın yollarını keşfetmişlerdir. Bu biyomakromoleküller arasında proteinler özel bir öneme sahiptir. Proteinler diğer makromoleküller ve inorganikler ile tepkimeye girerek tüm sert ve yumuşak dokuların yapısında bulunurlar ve tüm fonksiyonların çalışmasında etkili olurlar. Kemikler, dişler, deniz kabukları ve iskeletler, proteinlerin diğer organik ve inorganik moleküllerle birlikte çalıştıkları örneklerdir. Bu yapılarda yer alan proteinler sadece organik moleküllerle değil, aynı zamanda inorganik moleküllerle de bağ yaparak değişik fonksiyonel özelliklerin kazanılmasını sağlarlar. Örneğin, magnetotaktik bakteride (Aquaspirillum magnetotacticum) hücre içerisinde inorganik nanoyapılar bakterinin yerçekimi yardımı ile hareketini sağlar. Diğer bir örnek olan S-layer bakterisi (Synechococcus strain GL24) yüzeyinde oluşan kalsit tabaka koruyucu bir yapıdadır. Benzer şekilde fare dişindeki enamel, hidroksiapatit kristallerinden oluşan ve dişe hem esneklik hem dayanıklık sağlayan bir yapıdır. Bu örneklerde görülen, nano boyuttan makroya, yüksek derecede organize olmuş yapılar hiyerarşik bir şekilde oluşmuşlar ve inorganik moleküller ile organik moleküller birlikte rol almışlardır. Evrimsel süreçler sonucunda elde edilen bu fonksiyonlar ile canlılar çevresel şartlar karşısında avantaj elde etmişlerdir. Diğer yandan, doğada gözlemlenen bu tür fonksiyonel yapıların endüstride ve teknolojide yeniden yapılması son derece zorlu bir süreçtir. Bu yapılar detaylı incelendiğinde, proteinlerin düzenleyici, kontrol eden, bir araya getiren özellikleriyle bu yapıların oluşmasının temelinde olduğunu görüyoruz. O halde bu tür fonksiyonel özellikleri elde edebilmemiz için, inorganiklere seçici olarak bağlanabilen proteinleri kullanabiliriz. Moleküler Biyomimetik doğada moleküler seviyede gerçekleşen süreçleri izleyerek, benzer sistemleri oluşturmayı ve fonksiyonel sistemler kurmayı amaçlar. Canlıların milyonlarca yıl süren evrimsel süreçlerle elde ettikleri yararlı fonksiyonların gözlenmesi ile benzer fonksiyonel sistemler laboratuvar ortamında elde edilebilir. Moleküler Biyomimetik’in temelini de inorganiklere spesifik olarak bağlanabilen peptidlerin bulunması ve uygulamalarda kullanılması yatar. İnorganiklere spesifik olarak bağlanabilen peptidlerin bulunması için aşamalı bir yol izlenmesi genel kabul görmektedir. Öncelikle, kombinatoryel biyolojik teknikler (faj gösterim, hücre yüzey gösterim metodları vb.) yoluyla istenilen inorganik malzemeye spesifik peptidler bulunur ve bağlanma dereceleri sınıflandırılarak optimize edilir. Devamında ise, deneysel verilerden elde edilen bilgiler ışığında, biyoinformatik yöntemler ve benzerlik analizleri yoluyla daha iyi bağlanabilen peptidler elde edilir ve bu peptidler de test edilerek bağlanabilirliği kontrol edilir. Bu çalışmada kullanılan QBP1 peptidi 12 amino asit uzunluğunda ve kuartza bağlanabildiği deneysel çalışmayla gösterilmiş dizilerin biyoinformatik işlemden geçirilmesi sonucunda ortaya çıkarılmıştır. QBP (Quartz binding peptid), kuartza seçici olarak ve yüksek afinitede bağlanabilen 12 amino asit uzunluğunda bir peptidtir. Kuartz yüzeyine bağlanabilme özelliği sayesinde, istenilen bir protein QBP1 yoluyla kuartz yüzeyinde sabitlenebilir. Ancak bunun için ilk yapılması gereken, DNA seviyesinde QBP1 peptidinin dizisini iatenilen proteinin DNA dizisine eklemektir. Burada QBP1 peptidini AP (alkalin fosfataz) enziminin N-terminal ucuna eklendi. Protein üretilmesi aşamasında ise, bakteri hücresi kullanıldı ve sonuçlar optimize edilmeye çalışıldı. Burada amaçlanan, QBP1 yoluyla istenilen bir proteinin kuartz yüzeyine bağlanabileceğini ve uygulamalar açısından kullanışlı olacağını göstermektir. Ancak dikkat edilmesi gereken en önemli konuların başında, bakteri hücresinde protein üretimi sırasında meydana gelebilecek sıkıntılardır. Projemizde 2. jenerasyon GEPI’ler (Kuartza bağlanabilen peptidler, QBP-1) kullanıldı. Bu peptidler grubumuzda daha önceden faj gösterim metodu ile elde edilen 1. jenerasyon QBP’lerin biyoinformatik yöntemlerle işlenmesi sonucu elde edildi (1). Kuartz yüzey üzerine seçici olarak bağlanmada diğer QBP’ler arasından öne çıkan QBP-1 bu çalışma için seçildi. QBP-1 ile herhangi bir fonksiyonel molekül DNA seviyesinde biraraya getirilerek hibrid moleküller oluşturulabilir ve QBP-1’in kuartz yüzeyine seçici olarak bağlanabilme özelliğinden yararlanılarak istenilen molekülün fonksiyonel özellikleri kullanılabilir. Lakkazlar (EC 1.10.3.2) ligninolitik enzimler olarak molekül başına iki ya da dört bakır atomu tasıyan ve fenolik maddeleri moleküler oksijeni suya indirgeyerek okside edebilme özelligi olan ekstraselüler fenoloksidazlardır. Kagıt ve tekstil sanayiinden gelen endüstriyel atıkların detoksifikasyonu gibi çesitli biyoteknolojik süreçlerde çok önemli uygulamaları bulunan enzimler olup, herbisit ve pestisitlerin temizlenmesi, belli su saflastırma sistemleri için temizleme ajanları ve kozmetik malzemesi olarak da kullanılabilmektedir (2,3,4). Grubumuzda Pycnoporus sanguineus suşundan elde edilen lakkaz geninin Pichia pastoris’te ekspresyonu sağlanmıştır. Projenin bu kısmında ise, QBP1 peptidi (PPPWLPYMPPWS), Pichia pastoris maya hücrelerinden elde edilen lakkaz (lcc1) enziminin N-terminal ucuna yerleştirilerek füzyon protein oluşturuldu. Öncelikle DNA seviyesinde oluşturulan füzyon protein Pichia pastoris hücrelerinde üretildi. Oluşturulan füzyon protein ile lcc1 enziminin aktiviteleri karşılaştırılarak, QBP-1 peptidinin bağlanmış olduğu enzim aktivitesi üzerine etkisi ortaya konuldu. QBP1 peptidi, N-terminale bağlı olduğu halde, enzim aktivitesinde değişikliğe neden olmamaktadır. Bu ise bir “tag” molekülü olarak QBP1 için oldukça avantajlı bir özelliktir. Yapılacak uygulamaya göre, saflaştırma sonrasında tag molekülü, enzim ile bağlı olarak bırakılabilir. Çalışmanın devamında QBP-1 peptidi bir “tag” peptid olarak görev yaptırılarak hücre ortamından füzyon proteinin saflaştırılmasında kullanılmıştır. Hazırlanan kuartz kolonlar ve batch sistem yollarıyla, QBP-1’in kuartz yüzeyine bağlanabilme özelliği kullanılarak füzyon proteini hücre ortamından saflaştırmak mümkün olmuştur. Sonuç olarak burada, Moleküler Biyobenzetim ve biyoinformatik tekniklerinin birlikte kullanılmasıyla, daha ucuz ve basit saflaştırma yöntemleri geliştirme amaçlı yeni TAG moleküllerinin elde edilebileceğini göstermiş oluyoruz. Kuartza seçici olarak bağlanabilen QBP1 peptidi, sahip olduğu özellikler sayesinde, mevcut ticari “tag” (afinite etiketi) sistemleri ile rekabet edebilecek bir tag molekülüdür.
For nearly two decades, molecular biomimetics makes the solid-binding short peptides available for nano-biotechnological applications. The new trend for selecting the GEPIs (Genetically Engineered Peptides for Inorganics) is the combination of experimental knowledge with bioinformatics tools to design GEPIs computationally. Combinatorially selected and then computationally enhanced silica binding peptide, QBP1, can be used as a TAG peptide for protein purification process. Affinity tags are highly effcient tools for purifying proteins from crude extracts. The selected peptide’s ability to bind strongly and specifically on silica material makes it a strong candidate to form a novel tag system for protein purification purposes. In nature, as a result of evolutionary selection processes, biological systems present a high degree of sophistication by having the advantage of using key biomacromolecules such as lipids, proteins and polysaccharides. Among these macromolecules, proteins with unique and specific interactions with other macromolecules and inorganics control the structures and the functions of all hard and soft tissues in organisms. Bones, teeth, shells, skeletal units and spicules are examples of hard tissues produced as biocomposites in many multicellular organisms and they are composed of not only minerals of different kinds, including hydroxyapatite, calcium and silica but also structural macromolecules, especially proteins. They are the key molecules to form the inorganics-organics hybrids to acquire different functionalities. The examples include; magnetic nanoparticles formed by magnetotactic bacterium (Aquaspirillum magnetotacticum) which helps the bacteria to use the gravity to move, nanostructurally ordered thin film calcite on the outer layer of an S layer bacterium, Synechococcus strain GL24, that serves as a protective coating, mouse tooth enamel which is a hard, wear-resistant material with a highly ordered micro/ nano architecture consisting of hydroxyapatite crystallites that assemble into a woven rod structure. In these examples, biomaterials are highly organized from the molecular to the nano-, micro- and macroscales with complex architectures that each hierarchical manner has its own different function. Their organization and formation are self-directed; their interaction with their surroundings is dynamic; their structures, functions, self-healing in damage control are complex and their physical and chemical properties are multifunctional so their characteristics are difficult to achieve in purely synthetic systems. On the other hand, forming the similar nanotechnological systems in technology, have limitations in the synthesis and assembly into useful functional structures and devices. If harnessed well, novel engineering systems at nano-meter scale dimensions could have unique mechanical, electronic, magnetic and solution properties of nanostructured composites, low-dimensional semiconductors, single-domained particles and colloidal suspensions, respectively. Therefore mimicking nature has an enormous potential to achieve novel technological products and systems. Molecular biomimetics, mimicking the processes of biology at the molecular scale in materials formation for addressable structures and genetically tailorable properties, is a new approach for future bio-inspired materials. Such materials could be based on proteins binding to inorganics specifically and controlling their synthesis, formation and assembly so that these proteins can take place as integral parts of the final hybrid composite system. Molecular biomimetic approach has three solutions to the development of heterofunctional nanostructures: DNA-based technology, molecular and nanoscale recognition and self-assembly. Therefore, for nano- and nanobiotechnology applications, in the control of assembly and formation of functional inorganic and hybrid materials and systems, inorganic binding polypeptides are used as molecular building blocks.. For obtaining inorganic binding peptides, there is a consensus on using combinatorial biological techniques. A large library of different peptides having same number of amino acids is created and screened if there is a specific sequence that binds an inorganic material of practical interest strongly. The final aim is to produce a molecular erector set promoting the assembly of complex, hybrid structures composed of inorganics, proteins and even functional polymers. The proteins and their binding characteristics can be manipulated by using DNA technologies. These short polypeptides are referred as genetically engineered proteins for inorganics (GEPI). Post selection engineering followed the experimental knowledge by using bioinformatics to design GEPIs computationally. Sequence similarity scores are assigned by using genetic algorithm procedures so that de novo structure predictions can be made and tuned-up GEPIs can be developed for the desired affinity and specificity. The engineered peptides are used as molecular manipulators for a wide range of applications. From the molecular tool box, a protein data bank is available with containing fully characterized GEPIs. Furthermore, GEPIs can be fused to functional proteins that lead to multifunctional protein based constructs to be used for many nanobiotechnological applications. In this part of the study, we used one of the second generation GEPIs (Quartz Binding Peptide, (QBP-1)), which was developed using computational tools based on the knowledge generated through phage display technology (first generation binder peptides). Genetically engineered vector systems with the required enzyme cleavage sites can make possible in vivo production of any desired peptide-protein construct. A peptide with specificity and affinity to a desired material, e.g., QBP-1, quartz binding peptide, can be linked to a desired functional biomacromolecule, such as laccases to form the molecular hybrid. The vectors can be used as hosts for the production of any other constructs just by changing either the peptide (ligand) or the protein (functional moiety). The selected peptide’s ability to bind strongly and specifically on silica material will be used to form a Tag system. And these fusion proteins will be tried to produce in large quantities in novel protein expression systems such as the newly called SilTag. This system will be optimized to be a conventional method for the new coming GEPI and designer protein fusions. Laccases (EC 1.10.3.2) are lignolytic enzymes which carry two or four copper atoms per molekül.They are extracellular phenoloxidases with the ability to oxidize phenolic substances by reducing molecular oxygen into water. Laccases are key enzymes for many important industrial applications such as; detoxification of waste material from paper and textile industries, cleaning of herbicides and pesticides, water purification and production of cosmetic materials. In our research group, the expression of laccase gene from Pycnoporus sanguineus strain in Pichia pastoris was achieved. In this part of the project, QBP1 peptide (PPPWLPYMPPWS) is placed at the N terminus of the laccase enzyme (lcc1) in Pichia pastoris yeast cells to form a hybrid fusion molecule. Firstly, fusion protein was formed at DNA level and transformed into yeast cells, then the hybrid fusion was expressed at protein level. The activities of wild type enzyme (here, lcc1 laccase enzyme) and fusion protein were compared showing no significant effect of the tag peptide on laccase enzyme. For the next part of the study, QBP1 peptide is used as a “TAG” molecule for purification of fusion molecule through silica/ quartz packed columns. Overall, what we are showing here is that Molecular Biomimetics and bioinformatic tools, collectively, offer a good way of designing our own tag peptide for purification purposes with increased properties such as using cheaper material and single step easy purification protocols.
For nearly two decades, molecular biomimetics makes the solid-binding short peptides available for nano-biotechnological applications. The new trend for selecting the GEPIs (Genetically Engineered Peptides for Inorganics) is the combination of experimental knowledge with bioinformatics tools to design GEPIs computationally. Combinatorially selected and then computationally enhanced silica binding peptide, QBP1, can be used as a TAG peptide for protein purification process. Affinity tags are highly effcient tools for purifying proteins from crude extracts. The selected peptide’s ability to bind strongly and specifically on silica material makes it a strong candidate to form a novel tag system for protein purification purposes. In nature, as a result of evolutionary selection processes, biological systems present a high degree of sophistication by having the advantage of using key biomacromolecules such as lipids, proteins and polysaccharides. Among these macromolecules, proteins with unique and specific interactions with other macromolecules and inorganics control the structures and the functions of all hard and soft tissues in organisms. Bones, teeth, shells, skeletal units and spicules are examples of hard tissues produced as biocomposites in many multicellular organisms and they are composed of not only minerals of different kinds, including hydroxyapatite, calcium and silica but also structural macromolecules, especially proteins. They are the key molecules to form the inorganics-organics hybrids to acquire different functionalities. The examples include; magnetic nanoparticles formed by magnetotactic bacterium (Aquaspirillum magnetotacticum) which helps the bacteria to use the gravity to move, nanostructurally ordered thin film calcite on the outer layer of an S layer bacterium, Synechococcus strain GL24, that serves as a protective coating, mouse tooth enamel which is a hard, wear-resistant material with a highly ordered micro/ nano architecture consisting of hydroxyapatite crystallites that assemble into a woven rod structure. In these examples, biomaterials are highly organized from the molecular to the nano-, micro- and macroscales with complex architectures that each hierarchical manner has its own different function. Their organization and formation are self-directed; their interaction with their surroundings is dynamic; their structures, functions, self-healing in damage control are complex and their physical and chemical properties are multifunctional so their characteristics are difficult to achieve in purely synthetic systems. On the other hand, forming the similar nanotechnological systems in technology, have limitations in the synthesis and assembly into useful functional structures and devices. If harnessed well, novel engineering systems at nano-meter scale dimensions could have unique mechanical, electronic, magnetic and solution properties of nanostructured composites, low-dimensional semiconductors, single-domained particles and colloidal suspensions, respectively. Therefore mimicking nature has an enormous potential to achieve novel technological products and systems. Molecular biomimetics, mimicking the processes of biology at the molecular scale in materials formation for addressable structures and genetically tailorable properties, is a new approach for future bio-inspired materials. Such materials could be based on proteins binding to inorganics specifically and controlling their synthesis, formation and assembly so that these proteins can take place as integral parts of the final hybrid composite system. Molecular biomimetic approach has three solutions to the development of heterofunctional nanostructures: DNA-based technology, molecular and nanoscale recognition and self-assembly. Therefore, for nano- and nanobiotechnology applications, in the control of assembly and formation of functional inorganic and hybrid materials and systems, inorganic binding polypeptides are used as molecular building blocks.. For obtaining inorganic binding peptides, there is a consensus on using combinatorial biological techniques. A large library of different peptides having same number of amino acids is created and screened if there is a specific sequence that binds an inorganic material of practical interest strongly. The final aim is to produce a molecular erector set promoting the assembly of complex, hybrid structures composed of inorganics, proteins and even functional polymers. The proteins and their binding characteristics can be manipulated by using DNA technologies. These short polypeptides are referred as genetically engineered proteins for inorganics (GEPI). Post selection engineering followed the experimental knowledge by using bioinformatics to design GEPIs computationally. Sequence similarity scores are assigned by using genetic algorithm procedures so that de novo structure predictions can be made and tuned-up GEPIs can be developed for the desired affinity and specificity. The engineered peptides are used as molecular manipulators for a wide range of applications. From the molecular tool box, a protein data bank is available with containing fully characterized GEPIs. Furthermore, GEPIs can be fused to functional proteins that lead to multifunctional protein based constructs to be used for many nanobiotechnological applications. In this part of the study, we used one of the second generation GEPIs (Quartz Binding Peptide, (QBP-1)), which was developed using computational tools based on the knowledge generated through phage display technology (first generation binder peptides). Genetically engineered vector systems with the required enzyme cleavage sites can make possible in vivo production of any desired peptide-protein construct. A peptide with specificity and affinity to a desired material, e.g., QBP-1, quartz binding peptide, can be linked to a desired functional biomacromolecule, such as laccases to form the molecular hybrid. The vectors can be used as hosts for the production of any other constructs just by changing either the peptide (ligand) or the protein (functional moiety). The selected peptide’s ability to bind strongly and specifically on silica material will be used to form a Tag system. And these fusion proteins will be tried to produce in large quantities in novel protein expression systems such as the newly called SilTag. This system will be optimized to be a conventional method for the new coming GEPI and designer protein fusions. Laccases (EC 1.10.3.2) are lignolytic enzymes which carry two or four copper atoms per molekül.They are extracellular phenoloxidases with the ability to oxidize phenolic substances by reducing molecular oxygen into water. Laccases are key enzymes for many important industrial applications such as; detoxification of waste material from paper and textile industries, cleaning of herbicides and pesticides, water purification and production of cosmetic materials. In our research group, the expression of laccase gene from Pycnoporus sanguineus strain in Pichia pastoris was achieved. In this part of the project, QBP1 peptide (PPPWLPYMPPWS) is placed at the N terminus of the laccase enzyme (lcc1) in Pichia pastoris yeast cells to form a hybrid fusion molecule. Firstly, fusion protein was formed at DNA level and transformed into yeast cells, then the hybrid fusion was expressed at protein level. The activities of wild type enzyme (here, lcc1 laccase enzyme) and fusion protein were compared showing no significant effect of the tag peptide on laccase enzyme. For the next part of the study, QBP1 peptide is used as a “TAG” molecule for purification of fusion molecule through silica/ quartz packed columns. Overall, what we are showing here is that Molecular Biomimetics and bioinformatic tools, collectively, offer a good way of designing our own tag peptide for purification purposes with increased properties such as using cheaper material and single step easy purification protocols.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2011
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2011
Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2011
Anahtar kelimeler
Moleküler Biyobenzetim,
Kuvartza bağlanan peptidler,
afinite peptid etiket,
protein saflaştırması.,
Molecular Biomimetics,
Quartz Binding Peptides,
Affinity Peptide Tags,
Protein Purification