Tekrarlı yükler etkisindeki bölme duvarların çimento esaslı tekstil kompozitlerle iyileştirme yöntemlerinin geliştirilmesi
Tekrarlı yükler etkisindeki bölme duvarların çimento esaslı tekstil kompozitlerle iyileştirme yöntemlerinin geliştirilmesi
Dosyalar
Tarih
2021
Yazarlar
Dönmez, Didem
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Lisansüstü Eğitim Enstitüsü
Özet
Tuğla bölme duvarlar, Amerika, Avrupa ve Türkiye gibi bölgelerde yığma yapılarda ve betonarme yapılarda yaygın olarak kullanılmaktadır. Yığma bölme duvarlar betonarme taşıyıcı elemanlara kıyasla daha düşük dayanıma sahip olup, sismik yüklere ve / veya zemin hareketlerine maruz kaldıklarında genellikle gevrek davranış sergileme eğilimindedirler. Bu özellik, bu tür elemanları şiddetli dinamik yüklere karşı savunmasız hale getirir ve elemanların yükleme yönündeki şekil değiştirmelerini sınırlar. Bu duvarların sergilediği kırılgan davranış için farklı güçlendirme teknikleri geliştirilmiştir. Güçlendirmenin ve güçlendirme ile ilgili çalışmaların temel amacı, yapıların sünekliği ve yük taşıma kapasitesini artırmaktır. Yapısal elemanların taşıma kapasiteleri, süneklik dereceleri ve hasar durumları bir çok parametreye bağlıdır. Duvarların hasar mekanizmasını etkileyen parametreler ile ilgili olarak da duvar birimler, harcın mekanik özellikleri ve duvar bileşenlerinin geometrileri sayılabilir. Yığma yapılarda kullanılan duvarlar, aynı zamanda yapının taşıyıcı elemanı olarak kullanıldığından, yığma duvarda oluşan herhangi bir hasar tüm yapıdaki hasar modunu etkiler. Günümüzde duvarların çatlama şekline ve hasar mekanizmalarına göre çeşitli güçlendirme metodları bulunmaktadır. Hasar mekanizmasına bağlı olarak duvarların güçlendirilmesi (veya iyileştirilmesi), yapının yük taşıma kapasitesini artırır. Bu sebeple, sismik yükler altında hasar görmüş bölme duvarların iyileştirilmesi veya hasarsız duvarların güçlendirilmesi önem kazanmaktadır. Bu bağlamda, çeşitli güçlendirme sistemleri vasıtasıyla yığma ve dolgu duvarların mukavemet ve süneklik seviyesinin artırılmasına ilişkin uygulamada ve literatürde çok sayıda çalışma bulunmaktadır. Güvenli tasarım sınırlarını etkin bir şekilde korumak için dayanıklı, ekonomik ve kolay uygulanabilir duvar güçlendirme sistemleri için yöntemlerin geliştirilmesine ihtiyaç vardır. Dolayısıyla bu çalışma, günümüzdeki iyileşirme yöntemlerine alternatif bir yöntem olarak görülebilir. Yığma duvar ve dolgu duvarların genel davranışı, akademik toplumlar ve mühendisler arasında hala tartışılmaktadır. Analitik ve sayısal araçlar kullanarak bu tür duvarların doğrusal olmayan davranışını bulmak için çok sayıda araştırma vardır. Tasarım kodlarındaki standart denklemler konunun yeni bulgularına göre değiştirilmektedir. Öte yandan duvar testlerinin zorlukları teknik literatürde yeterli kaynak bulmayı zorlaştırmaktadır. Deneysel çalışmaların eksikliği, çalışmaların ağırlıklı olarak sayısal araçlara odaklanmasına neden olmaktadır. Hem dolgu hem de yığma duvarlar, tuğla duvar birimler ve yapıştırma bileşeni olarak harçlar ile yapısal kompozit elemanlar olarak kabul edilebilir. Duvarların hasarı, bileşenlerinin mekanik özelliklerine ve tuğla birimler ile harç arasındaki bağlantı parametrelerine bağlıdır. Bu nedenle, duvarın sismik performansını artırmak için bileşenlerin mekanik özelliklerini ve bağ dayanımını iyileştirmek gerekir. Dolayısıyla, bu iyileştirmeler yapıların güvenli tasarım sınırlarına ulaşmasına yardımcı olur. Bu çalışma, hasarlı duvarların tekstil takviyeli çimento esaslı kompozit (TRCC) malzemelerle güçlendirme yöntemlerini ele almaktadır. Bu amaçla deneysel bir çalışma yürütülmüştür. Sayısal ve analitik modelleme tekniklerini geliştirmek için yapılan deneylerden yararlanılmıştır. Bu çalışmalara ek olarak, TRCC kullanılarak yeni bir yapısal form üretme üzerine deneysel çalışmalar da gerçekleştirilmiştir. İlk olarak, duvar bileşenlerinin malzeme, mekanik ve arayüz bağ özelliklerinin belirlenmesi için deneysel çalışmalar yapılmıştır. Bu çalışmalar duvar birimlerinin basınç dayanımı testlerini, üçlü (triplet) kesme testlerini ve Z-şekilli numune testlerini kapsamaktadır. Yapılan bu testler ile tuğla duvar bileşenlerinin mukavemet ve hasar mekanizmaları belirlenmiştir. Bu kısımdaki deneysel çalışmalar kullanılarak numunelerin ayrıntılı modellemeleri geliştirilmiş olup, duvar birimleri arayüz bağ mekanik özellikleri elde edilmiştir. Elde edilen parametreler duvar mikro modellerinin oluşturulmasında duvar bileşenlerinin arayüz bağ özelliklerini tanımlamada kullanılmıştır. Yaygın olarak kullanılan tuğla ve beton blok duvar elemanlarının düzlem içi yüklemeler altındaki mekanik davranışları ve hasar modları, duvarların malzeme özellikleri ve arayüz davranışı göz önünde bulundurularak incelenmiştir. Duvar hasar mekanizması sadece harç ve tuğla malzemelerine bağlı olmayıp, aynı zamanda tuğla ve harç arasındaki bağ mukavemeti ile de ilgilidir. Harcın duvar birimleri ile bağlantılı olduğu yüzeyde kırılma davranışını tanımlamak için kohezif model ve Coulomb yasası kullanılmıştır. Sayısal çalışmalar, mod I (açılma) ve mod II'nin (kayma) kırılma biçimlerinin bileşkesinden oluşan bir arayüz modeline dayanmaktadır. Sonlu elemanlar yöntemi Benzeggagh-Kenane karma mod kohezif metoda dayanır. Bu metot, düzlem içi yükleme altında sadece mod I ve sadece mod II'nin parametrelerine bağlı bileşkeden oluşur ve duvar birimi-harç arayüzünde kohezyona ve sürtünme sonrası hasar davranışına izin verir. Aslında, duvara etkiyen yükler, yatay ve düşey yüklerin birleşimidir ve bu bileşke yükler altında hasar meydana gelir. Bu nedenle, duvar birimi-harç arayüzünde göçme durumunu incelemek için yüksek mukavemetli duvar birimi ve harç türleri seçilmiş; ve Benzeggagh-Kenane karma modu, duvar birimi-harç arayüzü için kullanılmıştır. Sayısal sonuçlar, deneysel sonuçlarla başarıyla doğrulanmıştır. Bu çalışmanın temel amacı, tekrarlı yükler altında duvar yapılarının süneklik seviyesini ve yük taşıma kapasitesini arttırmak için duvarların hasar mekanizmasını tespit etmek ve sonunda TRCC kullanarak güçlendirme yöntemi geliştirmektir. Bu bağlamda, güçlendirme malzemesi olarak TRCC'nin, hasar görmüş yığma duvarların iyileştirilmesinde ve onarılmasında kullanımı incelenmiştir. Bu nedenle, seçilen delikli kil tuğla ve delikli beton bloklardan oluşan duvar tipleri, deneysel ve sayısal olarak araştırılmıştır. Yapılan duvar testleri neticesinde oluşan hasar modlarına göre geliştirilen iyileştirme yöntemlerinin etkinliği incelenmiştir. İyileştirme teknikleri, test edilen duvarların hasar modlarına göre adım adım geliştirilmiştir. Test sonuçlarından elde edilen duvar davranışlarına göre uygulanan iyileştirme yöntemleri geliştirilmiştir. Yeni bir iyileştirme yöntemi olarak da TRCC içinde bulunan sürekli liflere ek olarak, güçlendirmede kullanılan çimento harcı (ECC) kısa lifler ile güçlendirilmiştir. ECC (Engineering Cementituous Composites)'de kullanılan kısa lifler PVA malzemesinden üretimiştir. Yeni hibrit kompozit malzeme olarak da adlandırılan bu yöntemin, yatay yükler sebebiyle kesme hasarı oluşan duvarların iyileştirmesindeki kullanımı araştırılmıştır. Bu yeni hibrit kompozit malzemeyi kullanmanın temel amacı, hasarlı duvarların süneklik seviyesini daha da artırmak ve sismik yatay yüklere karşı duvara yeterli dayanımı sağlamaktır. Testleri gerçekleştirilen duvar tiplerinin sayısal çalışmalarında, duvar bileşenleri ve duvar deneylerinden elde edilen parametreler kullanıldı. Tuğla duvarın, beton blok duvarın ve iyileştirme uygulanmış duvarların sayısal analizleri mikro modelleme teknikleri ve analitik yaklaşımlarla geliştirildi. Sayısal çalışmalardan elde edilen sonuçlarla, iyileştirme yöntemleri uygulanan duvar davranışları hakkında daha detaylı veriler elde edilmiştir. Test edilen duvar sistemlerinin doğrusal olmayan davranışı, sonlu eleman programı olan ABAQUS yazılımı kullanılarak simüle edilip elde edilen sonuçlar deneysel verilerle doğrulanmıştır. Son olarak, TRCC'ler kullanılarak geliştirilmeye açık yeni duvar birimleri oluşturulmuştur. Üretilen TRCC birimlerinin davranışları mekanik olarak irdelenmiştir. Üretilen TRCC birimler süreksizlik noktası içermeyen ideal geometrik form olarak silindirik tüp şeklinde tercih edilmiştir. TRCC birimlerin üretimi için farklı malzeme ve örgü şekline sahip tekstil takviyeleri kullanılmıştır. TRCC tüp birimler, çimento esaslı harç malzemesine, farklı katman sayısında gömülü olarak bulunan tekstil malzemesinden oluşmaktadır. Farklı tekstil malzemesi ve farklı tabaka sayılarından oluşan TRCC birimler ayrı ayrı test edilmiştir. Testler, monotonik ve yarı-çevrimsel yükleme şemaları altında gerçekleştirilmiştir. Deneysel çalışmaları yapılan TRCC tüp birimlerin her biri için sayısal analiz geliştirilmiş, gerilme ve hasar dağılımı incelenmiştir. TRCC silindirik tüplerin sonlu elemanlar analizi sonuçlarının deneysel sonuçlar ile uyumlu olduğu görülmüştür. Literatürde TRCC'lerin yapısal form oluşturmada kullanım alanı farklı şekillerde geliştirilmektedir. Bu çalışmada, TRCC tüp birimlerin bir araya getirilmesiyle oluşan yeni duvar formunda yük aktarımı, süneklik, enerji ve hasar durumunun incelenmesi için, duvar formunun yarı çevrimsel diyagonal basınç yüklemesi altında testi gerçekleştirilmiştir. Deney sonucunda yeni formun süneklik seviyesi ve hasar mekanizması incelenmiştir.
The wall as a structural member may have different forms and materials in the constructional fields. The wall members have mainly been used to separate the areas. These members do not have strengths as high as the main structural elements such as columns, shear walls, etc., and enough toughness against seismic loads. However, the walls in masonry structures should also bear the axial and lateral loads in addition to its separation role. Therefore, retrofitting these types of walls in masonry structures has special concerns and importance to increase its bearing capacity against earthquake loads. The masonry and infill walls have been widely used in regions like North America, Europe, and Turkey. The brick walls have been being used in reinforced concrete frames and masonry structures. These walls usually display brittle-like behavior and have negligible tensile strengths as they are exposed to seismic loads and/or ground excitations. This feature makes these types of members vulnerable to severe dynamic loads and to exhibit limited deformation capacity on the loading direction. These walls have a brittle nature regarding their cracking and failures. Different retrofitting techniques have been being used for the brittle behavior exhibited by these walls. The desired behavior expected from the masonry walls is to endure the extreme loading conditions. Therefore, the ductility of these type of members should be increased to a sufficient level. The main purpose of the studies related to the strengthening and retrofitting is to increase the ductility and the load-bearing capacity of the structures. There are several parameters that affect the damage mechanism of walls. These parameters involve the mechanical properties of the brick units and mortar and the bond performance of the constituents, and the geometry of the mortar joints. Since the masonry walls are being used as the load-bearing member of the structures in masonry structures, any damages would become essential for the entire failure mechanism. On the other hand, in reinforced concrete frames, the infill walls contribute only additional capacity to the overall performance of the structures which might be considered as a secondary factor. Hence increasing the ductility of infill walls, nevertheless, remains an important treatment to enhance the structural performance against severe lateral loads. There are several strengthening tools according to the cracking shape and mechanisms of the walls. Strengthening (or retrofitting) of the walls, based on the damage mechanism, eventually increase the load-bearing capacity of the structure. Extremely damaged walls or under designed walls should be replaced or retrofitted to meet the performance requirements for the seismic loads. In this context, there are numerous studies in practice and literature, related to increasing the strength and ductility level of masonry and infill walls by means of various retrofitting systems. Therefore, there is a need to improve the methods for strong, affordable, and efficient wall and strengthening systems in order to keep the safety design margins effectively. Hence this study can be viewed as to compensate for this deficiency. The overall behavior of the masonry and infill walls has still been being discussed among the engineering communities. There are numerous researches to find out the nonlinear behavior of these types of walls using analytical and numerical tools. The standard equations in the design codes are being modified according to the new findings of the subject. On the other hand, difficulties of the wall tests, make it hard to find enough sources in the technical literature. The deficiency of the experimental works, impose the studies focus mainly on numerical tools. Both infill and masonry walls can be considered as structural composite elements with their brick wall units and mortars as bonding component. The damage of the walls depends on the mechanical properties of their components and the bonding properties between the interface of brick units and mortar. Therefore, to increase the seismic performance of the wall, one needs to improve the mechanical properties of the components and the bonding performance. So, these improvements may lead to reach the safe design margins of the structures. This study deals with the retrofitting methods for damaged walls with textile reinforced cementitious composite (TRCC) materials. An experimental campaign was conducted for this purpose. The tools for the numerical and analytical analyses were developed based on the test results. Additionally, a novel structural unit using TRCC was produced to develop new insight into the textile-reinforced composite usages. Initially, the tests about the individual components of the wall units and their interface properties were conducted based on specific purposes. The experiment of Z-tests presents experimental studies and detailed micro-modeling on test setups to determine the strength and failure mechanism of brick masonry components. These experiments include compressive strength tests of masonry units, Red Clay brick masonry triplet tests, and Z-shaped flexural bond tests. These tests reveal the individual uniaxial strength of the unit types and the frictional behavior of the interfaces. The detailed models were able to construct with the parameters obtained from these tests. These parameters include the quantities related to the elastic, plastic, and fracture properties of the constituents and their interactions. The detailed micro-modeling of the walls was used to further investigate the response of these types of members. A specific division of the experimental campaign aims to investigate the mechanical behaviors and failure modes of masonry components under the in-plane loadings, by considering the materials and the interface behaviors individually. A contact behavior based on the Cohesive Zone Model and Coulomb's Law was used to describe the fracture response of mortar joints for the numerical modeling. The finite element method is based on Benzeggagh-Kenane mixed-mode cohesive interface, allowing failure modes of masonry mortar joints, cohesion, and the frictional post-failure behavior. This model consists of pure mode I and pure mode II under the in-plane loading. Indeed, loads on the masonry are a combination of lateral and vertical loads, and failure occurs under these mixed loads. For this reason, brick and mortar types with high strengths were used to examine the failure state at the brick-mortar interface; and Benzeggagh-Kenane mixed-mode was used for the brick-mortar interface. The results obtained from the FE simulation showed the reliability of computational modeling methods for masonry bed joint behaviors and corresponding interface modeling. The mechanical response and failure modes of the masonry wall components with the different damage patterns were investigated and analyzed. The main purpose of this study is to detect the damage mechanism of the walls and eventually develoing the retrofitting systems using TRCC in order to enhance the ductility level and load-bearing capacity of masonry wall structures under lateral cyclic loadings. In this context, the TRCC, as retrofitting methods, has been investigated with regard to its usage in strengthening and retrofitting systems of the damaged masonry walls. Therefore, the well-known hollow clay brick and hollow concrete brick walls were selected to be investigated experimentally and numerically with respect to the damage mechanism. The obtained results about the damage and failure modes from the wall tests, were utilized to develop and investigate the retrofitting method. The retrofitting techniques were developed step-by-step based on the damage modes obtained from the wall tests. The results of the tests were critically analyzed concerning the used retrofitting method. The retrofitting techniques were modified according to the need for retrofitting and the responses of the wall members. The mortar of TRCC was also reinforced with the short synthetic fibers in addition to the continuous long fibers included in the TRCC. The (short) fiber reinforced cementitious material is called engineering cementitious composites (ECC). The short fibers in ECC were produced by PVA material. This new hybrid composite material was analyzed regarding its retrofitting performance for the damaged walls under lateral extreme loadings. The main aim of using this new hybrid TRCC is to further increase the ductility level of the damaged walls as well as to provide sufficient strength to the wall against seismic loads. The numerical works were conducted to provide further information about the retrofitting systems as well as to verify the experimental results. The numerical analyses of the walls were performed based on the micro-modeling techniques. In the micro-models, the virtual specimens of the walls involve the detailed modeling of each component and their corresponding interface properties. Hence the nonlinear behavior of the tested wall systems was simulated based on the virtual models using the commercial finite element framework, ABAQUS. The properties related to the brick-mortar interface were obtained from the triplet and the z-test results. The parameters of the model are based on the experimental data included in this study. The micro modeling technique of masonry walls is seen to be the best option for this type of member. The numerical results are consistent with the tests. Lastly, new wall unit forms using TRCC were produced. A novel structural wall unit using the textile reinforced cementitious composites were manufactured and tested. These units can be considered as preliminary works of a novel structure. The TRCC units have cylindrical shapes in order to avoid singularities at the sharp corners. These TRCC units contain different textile materials with different long fiber patterns and various textile layers embedded in the mortar material. The mechanical responses of these units were obtained by experimental works. The tests of these units contain monotonic and cyclic loadings. Finite element analyses of these tests were conducted to obtain the damage mechanisms of each type of specimen. Numerical results of the TRCC cylindrical tubes comply with the experimental results. This newly emerging area of TRCC usage has been being developed in different forms among engineering practices. Then a new wall formation was assembled using these TRCC units. A new wall form consists of the TRCC tube units were formed to investigate the force transfer mechanism between the units. This investigation was performed by means of the diagonal compression test. The half-cyclic loading pattern was applied to this new form of a wall. The obtained test results were analyzed based on the damage mechanism, the ductility, and the energy-absorbing performance.
The wall as a structural member may have different forms and materials in the constructional fields. The wall members have mainly been used to separate the areas. These members do not have strengths as high as the main structural elements such as columns, shear walls, etc., and enough toughness against seismic loads. However, the walls in masonry structures should also bear the axial and lateral loads in addition to its separation role. Therefore, retrofitting these types of walls in masonry structures has special concerns and importance to increase its bearing capacity against earthquake loads. The masonry and infill walls have been widely used in regions like North America, Europe, and Turkey. The brick walls have been being used in reinforced concrete frames and masonry structures. These walls usually display brittle-like behavior and have negligible tensile strengths as they are exposed to seismic loads and/or ground excitations. This feature makes these types of members vulnerable to severe dynamic loads and to exhibit limited deformation capacity on the loading direction. These walls have a brittle nature regarding their cracking and failures. Different retrofitting techniques have been being used for the brittle behavior exhibited by these walls. The desired behavior expected from the masonry walls is to endure the extreme loading conditions. Therefore, the ductility of these type of members should be increased to a sufficient level. The main purpose of the studies related to the strengthening and retrofitting is to increase the ductility and the load-bearing capacity of the structures. There are several parameters that affect the damage mechanism of walls. These parameters involve the mechanical properties of the brick units and mortar and the bond performance of the constituents, and the geometry of the mortar joints. Since the masonry walls are being used as the load-bearing member of the structures in masonry structures, any damages would become essential for the entire failure mechanism. On the other hand, in reinforced concrete frames, the infill walls contribute only additional capacity to the overall performance of the structures which might be considered as a secondary factor. Hence increasing the ductility of infill walls, nevertheless, remains an important treatment to enhance the structural performance against severe lateral loads. There are several strengthening tools according to the cracking shape and mechanisms of the walls. Strengthening (or retrofitting) of the walls, based on the damage mechanism, eventually increase the load-bearing capacity of the structure. Extremely damaged walls or under designed walls should be replaced or retrofitted to meet the performance requirements for the seismic loads. In this context, there are numerous studies in practice and literature, related to increasing the strength and ductility level of masonry and infill walls by means of various retrofitting systems. Therefore, there is a need to improve the methods for strong, affordable, and efficient wall and strengthening systems in order to keep the safety design margins effectively. Hence this study can be viewed as to compensate for this deficiency. The overall behavior of the masonry and infill walls has still been being discussed among the engineering communities. There are numerous researches to find out the nonlinear behavior of these types of walls using analytical and numerical tools. The standard equations in the design codes are being modified according to the new findings of the subject. On the other hand, difficulties of the wall tests, make it hard to find enough sources in the technical literature. The deficiency of the experimental works, impose the studies focus mainly on numerical tools. Both infill and masonry walls can be considered as structural composite elements with their brick wall units and mortars as bonding component. The damage of the walls depends on the mechanical properties of their components and the bonding properties between the interface of brick units and mortar. Therefore, to increase the seismic performance of the wall, one needs to improve the mechanical properties of the components and the bonding performance. So, these improvements may lead to reach the safe design margins of the structures. This study deals with the retrofitting methods for damaged walls with textile reinforced cementitious composite (TRCC) materials. An experimental campaign was conducted for this purpose. The tools for the numerical and analytical analyses were developed based on the test results. Additionally, a novel structural unit using TRCC was produced to develop new insight into the textile-reinforced composite usages. Initially, the tests about the individual components of the wall units and their interface properties were conducted based on specific purposes. The experiment of Z-tests presents experimental studies and detailed micro-modeling on test setups to determine the strength and failure mechanism of brick masonry components. These experiments include compressive strength tests of masonry units, Red Clay brick masonry triplet tests, and Z-shaped flexural bond tests. These tests reveal the individual uniaxial strength of the unit types and the frictional behavior of the interfaces. The detailed models were able to construct with the parameters obtained from these tests. These parameters include the quantities related to the elastic, plastic, and fracture properties of the constituents and their interactions. The detailed micro-modeling of the walls was used to further investigate the response of these types of members. A specific division of the experimental campaign aims to investigate the mechanical behaviors and failure modes of masonry components under the in-plane loadings, by considering the materials and the interface behaviors individually. A contact behavior based on the Cohesive Zone Model and Coulomb's Law was used to describe the fracture response of mortar joints for the numerical modeling. The finite element method is based on Benzeggagh-Kenane mixed-mode cohesive interface, allowing failure modes of masonry mortar joints, cohesion, and the frictional post-failure behavior. This model consists of pure mode I and pure mode II under the in-plane loading. Indeed, loads on the masonry are a combination of lateral and vertical loads, and failure occurs under these mixed loads. For this reason, brick and mortar types with high strengths were used to examine the failure state at the brick-mortar interface; and Benzeggagh-Kenane mixed-mode was used for the brick-mortar interface. The results obtained from the FE simulation showed the reliability of computational modeling methods for masonry bed joint behaviors and corresponding interface modeling. The mechanical response and failure modes of the masonry wall components with the different damage patterns were investigated and analyzed. The main purpose of this study is to detect the damage mechanism of the walls and eventually develoing the retrofitting systems using TRCC in order to enhance the ductility level and load-bearing capacity of masonry wall structures under lateral cyclic loadings. In this context, the TRCC, as retrofitting methods, has been investigated with regard to its usage in strengthening and retrofitting systems of the damaged masonry walls. Therefore, the well-known hollow clay brick and hollow concrete brick walls were selected to be investigated experimentally and numerically with respect to the damage mechanism. The obtained results about the damage and failure modes from the wall tests, were utilized to develop and investigate the retrofitting method. The retrofitting techniques were developed step-by-step based on the damage modes obtained from the wall tests. The results of the tests were critically analyzed concerning the used retrofitting method. The retrofitting techniques were modified according to the need for retrofitting and the responses of the wall members. The mortar of TRCC was also reinforced with the short synthetic fibers in addition to the continuous long fibers included in the TRCC. The (short) fiber reinforced cementitious material is called engineering cementitious composites (ECC). The short fibers in ECC were produced by PVA material. This new hybrid composite material was analyzed regarding its retrofitting performance for the damaged walls under lateral extreme loadings. The main aim of using this new hybrid TRCC is to further increase the ductility level of the damaged walls as well as to provide sufficient strength to the wall against seismic loads. The numerical works were conducted to provide further information about the retrofitting systems as well as to verify the experimental results. The numerical analyses of the walls were performed based on the micro-modeling techniques. In the micro-models, the virtual specimens of the walls involve the detailed modeling of each component and their corresponding interface properties. Hence the nonlinear behavior of the tested wall systems was simulated based on the virtual models using the commercial finite element framework, ABAQUS. The properties related to the brick-mortar interface were obtained from the triplet and the z-test results. The parameters of the model are based on the experimental data included in this study. The micro modeling technique of masonry walls is seen to be the best option for this type of member. The numerical results are consistent with the tests. Lastly, new wall unit forms using TRCC were produced. A novel structural wall unit using the textile reinforced cementitious composites were manufactured and tested. These units can be considered as preliminary works of a novel structure. The TRCC units have cylindrical shapes in order to avoid singularities at the sharp corners. These TRCC units contain different textile materials with different long fiber patterns and various textile layers embedded in the mortar material. The mechanical responses of these units were obtained by experimental works. The tests of these units contain monotonic and cyclic loadings. Finite element analyses of these tests were conducted to obtain the damage mechanisms of each type of specimen. Numerical results of the TRCC cylindrical tubes comply with the experimental results. This newly emerging area of TRCC usage has been being developed in different forms among engineering practices. Then a new wall formation was assembled using these TRCC units. A new wall form consists of the TRCC tube units were formed to investigate the force transfer mechanism between the units. This investigation was performed by means of the diagonal compression test. The half-cyclic loading pattern was applied to this new form of a wall. The obtained test results were analyzed based on the damage mechanism, the ductility, and the energy-absorbing performance.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2021
Anahtar kelimeler
Bölme duvarlar,
Partition walls,
Lifli kompozitler,
Fiber composites,
Sismik güçlendirme,
Seismic strengthening,
Tuğla duvarlar,
Brick walls