Lazer Mesafe Ölçüm Sistemli Otonom Robotlarda Kalman Filtresi Tabanlı Eşzamanlı Lokalizasyon Ve Haritalama

dc.contributor.advisor Temeltaş, Hakan tr_TR
dc.contributor.author Ersoz, Fatma Ecehan tr_TR
dc.contributor.department Kontrol ve Otomasyon Mühendisliği tr_TR
dc.contributor.department Control and Otomation Engineering en_US
dc.date 2007 tr_TR
dc.date.accessioned 2015-06-15T17:03:02Z
dc.date.available 2015-06-15T17:03:02Z
dc.description Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007 tr_TR
dc.description Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007 en_US
dc.description.abstract Bu çalışmada lazer mesafe ölçüm sistemli bir otonom robotun Kalman Filtesi tabanlı kestirim yöntemleri kullanılarak tamamen bilgi sahibi olmadığı bir ortamda lokalizasyon ve haritalama işlemlerini yapma süreci ele alınmıştır. Lineer sistemler için başarılı bir kestirim yöntemi olan Kalman Filtresinin algoritması incelenmiş ve doğrusal olmayan sistemlerde uygulanması için geliştirilmiş olan Genişletilmiş Kalman Filtresi ve Dağılımlı Kalman Filtresi açıklanarak bu algoritmaların SLAM problemine uygulanması ve elde edilen sonuçlar incelenmiştir. Birinci bölümde genel kavramlardan bahsedilmiş ikinci bölümde mobil robotlar, otonom robotlar ve robotlardaki sensör sistemleri üzerinde durulmuştur. Mobil robotlarda haritalama ve lokalizasyon amaçlı olarak kullanılan kızılötesi, ultrasonik ve lazer sensörlerin özelliklerine değinilmiştir. Üçüncü bölümde kestirim teorisinin, Kalman Filtresinin temeli ve algoritmanın aşamaları anlatılmış, bu yapı temel alınarak doğrusal olmayan sistemlerde kestirim için geliştirilmiş yöntemlerden olan genişletilmiş kalman filtresi ve dağılımlı kalman filtreleri ele alınmış ve karşılaştırılmıştır. Dördüncü bölümde Mobil Robotlarda Eşzamanlı Lokalizasyon ve Haritalama algoritması olan SLAM, bu işlem için kullanılabilen haritalama yöntemleri ile lokalizasyon ve haritalama için oluşturulan ortak olasılıksal yapı açıklanmıştır. Beşinci bölümde lokalizasyon ve haritalama probleminin genişletilmiş kalman filtresi ve dağılımlı kalman filtresi yöntemleri ile simulasyon uygulamaları elde edilmiştir. Burada robot diferansiyel sürüş sistemine sahip olarak modellenmiş ve lazer sensöre ait olasılıksal sensör modeli oluşturulmuştur. Bu yöntemlerde elde edilen sonuçlar robot konumunun ve ortam yapılarının konumlarına ait kestirimlerdeki hatalar açısından karşılaştırılmıştır. Son bolümde bu tez çalışmasından elde edilen sonuçlar açıklanmış ve ileride yapılabilecek çalışmalardan bahsedilmiştir. tr_TR
dc.description.abstract Although different techniques have been used for localization and map building with autonomous robots, SLAM(Simultaneous Localization and Mapping) is a new approach in robotic researchs field. In this study SLAM algorithm is applied to a mobile robot by simulation with given some waypoints for its path. The aim of SLAM is to obtain a convergent map of the environment while the robot taking measurements by its sensors. It makes observations and estimates its own position and the features position. Two version of Kalman Filter is applied for SLAM algorithm.Because of the linearization errors of EKF, this filter has the results of estimated feature pozitions with an error. EKF SLAM and UKF SLAM are compared by the means of localization and mapping results. The result of the simulations shows that UKF SLAM gives more accurate estimation results than EKF SLAM. First chapter is about the general concepts about robotic studies and their aims. In the second chapter mobil robots, autonomous robots and sensor types for measurements are explained. Third chapter tells about the estimation theory, the basis of Kalman Filter and the structure of Kalman Filter algorithm. Further versions of Kalman Filter for nonlinear system estimation as Extended Kalman Filter and Unscented Kalman Filters are explained. Fourth part of this thesis is about The SLAM algorithm, its mathematical foundation and application for robotic systems. Localization and mapping techniques are also the components of this chapter. Simulation applications and its results are given in the fifth cahapter with the comparisons of EKF SLAM and UKF SLAM. And in the last chapter the conclusion and the further studies take place. en_US
dc.description.degree Yüksek Lisans tr_TR
dc.description.degree M.Sc. en_US
dc.identifier.uri http://hdl.handle.net/11527/5244
dc.publisher Fen Bilimleri Enstitüsü tr_TR
dc.publisher Institute of Science and Technology en_US
dc.rights İTÜ tezleri telif hakkı ile korunmaktadır. Bunlar, bu kaynak üzerinden herhangi bir amaçla görüntülenebilir, ancak yazılı izin alınmadan herhangi bir biçimde yeniden oluşturulması veya dağıtılması yasaklanmıştır. tr_TR
dc.rights İTÜ theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. en_US
dc.subject kalman filtresi tr_TR
dc.subject es zamanli lokalizasyon ve haritalama tr_TR
dc.subject kalman filter en_US
dc.subject simultaneously localization and mapping en_US
dc.title Lazer Mesafe Ölçüm Sistemli Otonom Robotlarda Kalman Filtresi Tabanlı Eşzamanlı Lokalizasyon Ve Haritalama tr_TR
dc.title.alternative Simultaneously Map Building And Localization Techniques For Autonomous Robots Using Laser Range Finders en_US
dc.type Master Thesis en_US
Dosyalar
Orijinal seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.alt
Ad:
7396.pdf
Boyut:
770.74 KB
Format:
Adobe Portable Document Format
Açıklama
Lisanslı seri
Şimdi gösteriliyor 1 - 1 / 1
thumbnail.default.placeholder
Ad:
license.txt
Boyut:
3.16 KB
Format:
Plain Text
Açıklama