Kaskad Sönümlemeli Kanallarda Fiziksel Katman Ağ Kodlama Yapan Araçlar Arası Haberleşme Sistemlerinin Tasarımı

thumbnail.default.alt
Tarih
2017-02-2
Yazarlar
Ata, Serdar Özgür
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Özet
İnsandan insana ses taşıma odaklı ikinci nesil (2nd Generation, 2G) mobil haberleşme teknolojilerinin kaydettiği başarıdan sonra telsiz iletişim alanındaki eğilimler insandan-makinaya olarak adlandırılan veri taşıma odaklı telsiz iletişim teknolojilerine (3rd Generation, 3G) doğru yönelmiştir. Bu veri taşıma odaklı iletişim konsepti ile birlikte son kullanıcılar multi-media mesajlaşma, internet erişimi, e-ticaret ve video paylaşımı gibi çok çeşitli telsiz iletişim servislerine kavuşma imkanı buldular. Telsiz iletişimdeki başarılı ve hızlı ilerlemenin bir sonucu olarak günümüzde bu alanda yapılan araştırma-geliştirme çalışmalarının yönü yüksek veri iletim hızları (>100Mb/s) ve daha yüksek bant-verimliliği (>10b/s) gerektiren makineden-makineye (Mactine-to-Machine, M2M) telsiz iletişime doğru yönelmiş bulunmaktadır. M2M telsiz iletişiminde bir araştırma/uygulama alanı araçtan-nesnelere (Vehicle-to-things, V2X) haberleşmedir. Araçtan araca (Vehicle-to-Vehicle, V2V) ve araçtan yol kenarındaki baz istasyonuna (Vehicle-to-Infrastructure, V2I) olmak üzere iki haberleşme sistemini birlikte içeren V2X haberleşme sistemleri günümüzde özellikle büyük metropollerde günlük hayatı pek çok yönden olumsuz etkileyen trafik kaynaklı problemlere karşı getirdiği çözüm önerileri nedeniyle üniversitlerde teorik çalışmalar yapan araştırmacıların yanı sıra, resmi kurumların, standartları belirleyen organizasyonların ve özellille otomotiv ve bilişim endüstrisindeki şirketlerin gittikçe artan dikkatini çekmeyi başarmıştır. Araçlar arası haberleşme teknolojilerinin gelişimine ivme kazandıran önemli gelişmelere bakılacak olursa; 1999 yılında ABD’de Federal Communication Comission (FCC) 5.9GHz frekans bandında 75MHz’lik bir frekans bandının V2X haberleşme için kullanımını onaylamıştır. 2008 yılında ise Avrupa haberleşme standardları enstitüsü (European Telecommunication Standards Institute) yine 5.9GHz frekans bandında 30Mhz’lik bir bandın bu amaçla kullanılmasını önermiştir. FCC’nin 2003 yılında ITS (Intelligent Transportation Systems) uygulamalarında kullanılacak haberleşme birimleri için yayımladığı rapor ve talebin ardından DSRC (Dedicated Short Range Communication) olarak adlandırılan V2X haberleşme sistemlerinin standardizasyonu için çalışmalar başlamış ve 2004 yılında IEEE 802.11standardı temel alınarak geliştirilen IEEE 802.11p standardı WAVE (Wireless Access in Vehicular Environments) olarak da bilinen adıyla 2010 yılında kabul edilmiştir. Bugün artık pek çok üniversitede çeşitli araştırma grupları V2X haberleşme üzerine akademik çalışmalar yürütürken endüstriyel seviyede ise Avrupa’da örneğin büyük ölçekli Avrupa Birliği projeleri olarak CAR2CAR Communication Corsortium, Secure Vehicular Communication ve NEARCTIS yürütülmektedir. Amerika’da ise ulaştırma bakanlığının desteklediği IntelliDrive projesi ile güvenlik, mobil iletişim ve çevre koruma amaçlı hedefler doğrultusunda trafik altyapısı, araçlar ve yolcuların mobil haberleşme cihazları arasında haberleşmeyi sağlayacak bir telsiz iletişim ağı alt yapısı kurma çalışmaları sürdürülmektedir. Benzer çalışmalar Japon Otomobil Teknolojileri Araştırma Enstitüsü JARI tarafından da yapılmaktadır. Yine V2V haberleşmenin trafik güvenliğini arttırmadaki öneminin anlaşılmasından sonra lider otomobil üreticisi firmalar “Crash Avoidance Metrics Partnership” adını verdikleri proje için ortak çatı altında biraraya gelmişlerdir. Kısaca belirtilmek istenirse, telsiz iletişim alanında V2X haberleşme yeni ama oldukça önemli bir çalışma alanı olarak görülmektedir. Günümüz telsiz haberleşme teknolojilerinden biri olan araçtan araca haberleşme, trafik verimliliğini arttırma, kazaların azaltılması ve trafikte güvenli sürüş konulara çözümler sağlayacak akıllı taşıma sistemlerinin gerçeklenmesinde çekirdek teknoloji konumundadır. Hücresel haberleşme ile karşılaştırıldığında, V2V haberleşme bazı yeni zorlukları içerir. V2V haberleşme kanallarının istatistiksel özellikleri hücresel telsiz haberleşme kanallarının istatistiksel özelliklerinden farklıdır. Bu nedenle, Rayleigh, Rician ve Nakagami-m gibi iyi bilinen hücresel haberleşme kanal modelleri V2V haberleşme kanallarındaki sönümlemeyi modellemek için uygun değildir. Yapılan saha ölçümlerinden görüldüğü üzere, V2V haberleşme kanallarında kanal kazancı, hareketli kaynaklar etrafında, her biri ayrı bir işaret kaynağı gibi davranan birbirinden bağımsız saçıcı gupların oluşturduğu sanal kanalların kanal kazançlarının çarpımından meydana gelmektedir. Kanal kazancının bu çarpımsallık niteliğinden dolayı V2V haberleşme kanalları kaskad sönümlemeli kanal modeli olarak adlandırılan bir grup kanal modeli ile modellenmelidirler. V2V haberleşmede karşılaşılan zorlukların bir nedeni, gerek haberleşen araçların gerekse onların etrafındaki diğer araçların yüksek hızlardaki hareketliliği nedeniyle haberleşme ortamının çevresel olarak çok hızlı değişmesidir. Bunun yanısıra araç antenlerinin görece düşük yükseklikte olmasının da etkisiyle, özellikle yerleşim birimleri içindeki yoğun trafik şartları düşünüldüğünde, haberleşen araçlar arasında çoğu zaman doğrudan görüş olmayacaktır. Bu da iletişimin sürekliliği ve güvenilirliği açısından işbirlikli haberleşmeyi kaçınılmaz kılmaktadır. Ancak doğrudan haberleşmeye nazaran daha fazla zaman dilimi gereksinimi işbirlikli sistemlerin temel dezavantajıdır. Veri iletim hızında kayba neden olan bu dezavantajı yok etmenin bir yolu, iki haberleşme biriminin aynı zaman aralığında aynı röle üzerinden veri aktarmasına imkan tanıyan fiziksel katman ağ kodlama (Physical Layer Network Coding, PLNC) tekniğidir. Ani gelişen durumların çok sayıda kullanıcıya kısa sürede bildirilmesini gerektirecek trafik içi haberleşmede PLNC tekniği yüksek başarımlı V2V haberleşme sistemlerinin tasarımında önemli bir rol oynayacaktır. Bu tezde sunulan çalışmalar üç grupta ele alınabilir. Birinci gruptaki ilk çalışmada tek antenli tek röleli ve röle üzerinde sabit kazançlı kuvvetlendir-ve-aktar tekniği kullanılarak PLNC yapılan bir işbirlikli V2V haberleşme sistemi tasarlanmıştır. Sistemin performans analizleri kaskad Nakagami-m kanal modeli varsayımı altında yapılmış olup bu kanal modeli, araçlar arası haberleşmeye uygun olan çift Rayleigh, kaskad Rayleigh, çift Nakagami-m ve genelleştirilmiş-K kanal modellerinin yanı sıra geleneksel hücresel haberleşme kanal modellerini de kapsamaktadır. Dolayısıyla bu çalışmada elde edilen sonuçlar bu kanal modelleri için de geçerlidir. Sistemin hata performans analizleri yapılırken öncelikle uçtan-uca işaret gürültü oranına ait birikimsel olasılık dağılım fonksiyonu kapalı formda elde edilmiş, ardından bu dağılım fonksiyonu kullanılarak sistemin servis kesinti olasılığı ve çeşitli modülasyon tipleri için sembol hata olasılığı ifadeleri kapalı formda bulunmuştur. Bu analizlerin bir devamı olarak, birinci grupta yapılan ikinci çalışmada ise, kaynaklarda öz-girişim işaretinin tam olarak yok edilemediği durumlar için yine tek antenli tek röleli rölede sabit kazançlı kuvvetlendir-ve-aktar tekniği kullanılarak PLNC yapılan sistemin performans analizi kaskad ve hızlı sönümlemeli Rayleigh kanal varsayımı altında yapılmış ve sisteme ait servis kesinti olasılığı ifadesi kapalı formda elde edilerek öz girişimin sistem performansına etkileri incelenmiştir. Tezde yer alan ikinci grup çalışmada, çok girişli çok çıkışlı (multiple input multiple output, MIMO) bir V2V haberleşme sistemi tasarlanmıştır. Sistemde birden çok röle olup kaynaklar ve tüm röleler çok antenlidir. Ayrıca röleler değişken kazançlı kuvvetlendir-ve-aktar tekniği uygulayarak PLNC yapmaktadır. Bu çalışmada da kaskad Nakagami-m kanal modeli kullanıldığından elde edilen sonuçlar yukarıda bahsedilen diğer kaskad veya kaskad olmayan kanal modelleri için de geçerlidir. Burada yapılan analizler ile tüm sistemin servis kesinti performansı kaynakların ortak servis kesinti olasılıkları cinsinden ifade edilerek bu olasılık tek katlı integral formunda bulunmuştur. Ardından servis kesinti olasılığı için alt ve üst sınır ifadeleri kapalı formda elde edilmiştir. Bulunan sınır ifadeleri aracılığıyla sistemde elde edilebilecek çeşitleme derecesi, röle sayısı, kaynak ve rölelerde kullanılan anten sayıları ve kanalların kaskadlık dereceleri ve sönümleme parametrelerinin aldığı değerlere bağlı olarak sistem parametreleri cinsinden ifade edilmiştir. Tasarlanan bu sistem ile ortak anten ve röle seçimi yapılarak V2V haberleşme sistemlerinin performansının daha da iyileştirilebileceği gösterilmiştir. Tezde yapılan üçüncü çalışmada PLNC yapılan bir çok antenli çok röleli V2V haberleşme sisteminde uzay-zaman kafes kodlama tekniği kullanılarak sistem performansının daha da iyileştirilmesi sağlanmıştır. Bu amaçla öncelikle sistemin çiftsel hata olasılığı için bir üst sınır ifadesi çift Rayleigh sönümlemeli kanal varsayımı için elde edilmiştir. Daha sonra bu olasılığı en küçük yapacak kodların inşaası için yeni bir kod tasarım ölçütü türetilmiş ve bu ölçüt kullanılarak çift Rayleigh sönümlemeli kanallarda PLNC tekniği kullanan MIMO V2V haberleşme sistemler için 4 ve 8 durumlu yeni uzay-zaman kafes kodları bulunmuştur.
As a current state-of-the-art in wireless communications, Vehicle-to-Vehicle (V2V) communications is the core technology to build the intelligent transportation infrastructures promising the solutions to the issues such as traffic efficiency increasing, accident reduction and safety improvements. In comparison with the cellular wireless communication, there are some new challenges within the V2V communication. The statistical properties of the V2V communication channels differ from those of the cellular channels. Thereby, well known cellular channel models such as Rayleigh, Rician and Nakagami-m are not appropriate to simulate the fading in V2V communication channels. Field measurements reveal that V2V communication channels can be modeled by a class of channel models where the gain is obtained by multiplying the gains of virtual channels produced by each individual scattering group around that behaves as an independent signal source. Due to their multiplicativity nature, V2V communication channels are named as cascaded fading channels. A major challenge in V2V communications is that the physical environment is unsettled due to the mobility of the wireless units and other vehicles around these units. Additionally, the vehicle antennas have relatively lower heights. Therefore, especially considering the traffic in urban areas, most of the time there will be no line-of-sight between the communicating vehicles. This makes cooperative communications inevitable for seamless and reliable communication among the moving vehicles. And yet, compared to non-cooperative communication, the cooperation protocols require more time slots, which results in a decrease in data transmission rate. A method to cope with this drawback is physical layer network coding (PLNC) providing the simultaneous data transmissions of the vehicles via the same relay. The PLNC method will play an important role in the design of the high performance V2V communication systems serving in the heavy traffic conditions when a large number of users need to be notified about suddenly changing situations. Studies presented in this thesis can be divided into three categories. In the first category, a cooperative V2V communication system employing PLNC using fixed gain amplify-and-forward technique is proposed and its outage and error performance analysis is investigated. Analytic results are derived under the cascaded Nakagami-m fading channel model assumption covering double Rayleigh, cascaded Rayleigh, double Nakagami-m, generalized-K and conventional cellular channel models as well. Therefore, the results obtained by this work are also valid for all these channel models. In the error performance investigation of the proposed system, first, exact cumulative density function of the end to end signal to noise ratio is derived. Then, using this cumulative density function, the exact closed-form outage probability is obtained. Then the exact closed-form symbol error rate expression for various modulation types is derived. As a continuation of this work, the performance analysis of the same system is investigated for not only cascaded but also fast fading Rayleigh channels in the presence of the self-interference. Thus the exact closed-form outage probability expression is obtained, and it is shown that the self-interference may cause the error floor in the performance of the network coded communication systems. In the second category, a multiple input multiple output (MIMO) V2V communication system is proposed. In this proposed system, all source and relay vehicles have multiple antennas while the relays employ the PLNC method using variable gain amplify-and-forward technique. The analytic results are derived for the cascaded Nakagami-m fading channels, and therefore the result of this work are held for the cascaded and non-cascaded channels, as mentioned above. Furthermore, the performance of the system is evaluated in terms of joint outage probability of the sources, and the exact outage probability expression is obtained in a single integral form while the upper and the lower bounds of the outage probability are obtained in the closed-form. Moreover, asymptotic diversity order is quantified as a function of the number of the relays, the number of the antennas at the sources and the relays, and the channel parameters which are cascading degree and fading parameter values. Within this system, it is shown that the service outage probability performance can be enhanced by employing joint antenna and relay selection. In the third category, PLNC and space-time trellis coding (STTC) techniques are combined to improve the error performance of a multi-antenna multi-relay V2V system. The upper bound expression of the pairwise error probability of the system is evaluated for double Rayleigh fading channels. Then using the upper bound expression, a novel code-design criterion is derived for cascaded fading channels. Then, by using this new criterion, a novel STTCs with 4 and 8 states are proposed for MIMO V2V PLNC systems.
Açıklama
Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2017
Thesis (Ph.D.) -- İstanbul Technical University, Institute of Science and Technology, 2017
Anahtar kelimeler
Araçlar Arası Haberleşme, Fiziksel Katman Ağ Kodlala, Kaskad Sönümlemeli Kanal, Ortak Röle-anten Seçimi, Uzay Zaman Kafes Kodlama, Vehicle-to-vehicle Communication, Physical Layer Network Coding, Cascaded Fading Channels, Joint Relay-antenna Selection, Space-time Trellis Code
Alıntı