İkiz merdane döküm yöntemi ile alüminyum AA5754 alaşımı levha üretimi, döküm ve termomekanik proses parametrelerinin etkilerinin araştırılması
İkiz merdane döküm yöntemi ile alüminyum AA5754 alaşımı levha üretimi, döküm ve termomekanik proses parametrelerinin etkilerinin araştırılması
thumbnail.default.placeholder
Tarih
2016
Yazarlar
Demiray Cucurachi, Yeliz
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
Son yıllarda sera gazları salınımın azaltılması için yapılan ekonomik ve politik baskılar, otomobil ağırlıklarının azaltılması yönünde yapılan çalışmalara da yön vermiş, yüksek mukavemet-ağırlık oranına sahip AA5754 ve AA5182 gibi AAxxx serisi alaşımların otomotiv endüstrisinde artan kullanımına sebep olmuştur. Günümüzde bu alaşımlar otomobillerin, şasi, beyaz gövde ve jant gibi yapılarında kullanılmaktadır. AA5754 alaşımı, sahip olduğu korozyon direnci ve şekillendirilebilme özellikleri sebebiyle denizcilik ve inşaat sektörelerinden de yaygın şekilde kullanılmaktadır. Alüminyum alaşımı levhalar genellikle direk soğutma döküm yöntemi (DC) ardından sıcak ve soğuk hadde ile üretilirler. İkiz merdane döküm yöntemi (İMD) ise ergimiş metalden direk levha üretimine olanak sağlayarak sıcak hadde adımını ortadan kaldırır. İMD yönteminin sahip olduğu bu özellik daha az maliyet ve enerji gereksinimi anlamına gelse de yöntemin, düşük döküm hızı, segregasyon oluşumu gibi dezavantajları da bulunmaktadır. İMD yönteminde soğuma hızı diğer döküm yöntemlerine göre daha yüksektir. AA5xxx serisi alümünyum alaşımlarının içerdikleri alaşım elementleri sebebiyle soğuma aralıklarının geniş olması döküm sırasında ve sonrasında bazı problemler yaratabilmektedir. İMD yöntemi ile üretilen alüminyum alaşımı levhalarda nihai ürün elde etmek için soğuk hadde ve daha sonra arzu edilen mekanik özellikleri yakalamak için tavlama işlemleri yapılması gerekir. Son elli yılda farklı levha döküm teknikleri üzerinde çalışmalar yapılmıştır. Ancak herbirinin kendine has zorlukları ve sınırları mevcuttur. İMD yönteminde en sık karşılaşılan zorluklar ise yüzey kalitesi ve segregasyonlardır. Bu tez çalışmasında 1300 mm genişliğinde, 6 mm kalınlığında AA5754 alaşımı, İMD yöntemi ile başarılı şekilde üretilmiştir. Döküm ve termomekanik proses parametrelerinin etkileri araştırılmıştır. Döküm çalışmaları PMS Alüminyum firmasının Bursa'daki tesislerinde gerçekleştirilmiştir. Tip (seramik kalıp) tasarımı döküm kalitesi için çok önemlidir. 120 mm genişliğinde dört girişe sahip tip ile yapılan dökümde sıcak bant izleri gözlenmiştir. Bu izlerin sebebinin metalin tip içerisinde iyi dağıtılamaması olduğu, o yüzden bu ölçülere sahip tipin AA5754 alaşımının bu çalışmadaki şartlarda dökülmesi için uygun olmayacağı sonucuna varılmıştır. Ayrıca, tandişe bet (engel) uygulaması yapılmış ve kullanılan tipin giriş eni daha da genişletilerek sıcak bant izi oluşumunun önüne geçilmiştir. İlk döküm denmesinde merdane bombesi 177,8 µm, döküm hızı 90 cm/dk, TMMA (tip ile merdane merkezi arası) mesafesi 64 mm ve döküm sıcaklığı 715 °C'dir. 120 mm genişliğinde dört girişe sahip tip kullanılmıştır. 8 mm dudak kalınlığına sahip bu tip ile yapılan dökümde hedef kalınlık olan 6 mm kalınlık elde edilememiştir. Levha bombesi % 2,14–2,28 arasında ölçülmüştür. Bu dökümde levha düzgünlüğü ve profili istenen değerlerde elde edilememiş, sıcak bant oluşumu gözlenmiştir. İkinci döküm denemesinde merdane bombesi ve döküm hızı değerleri ilk döküm denemesiyle aynıdır (sırasıyla 177,8 µm, 90 cm/dk). TMMA mesafesi 60 mm'ye indirilmiş ve döküm sıcaklığı 725 °C'ye çıkarılmıştır. 160 mm genişliğinde dört girişli tip kullanılmıştır. 6 mm dudak kalınlığına sahip bu tip ile, hedef kalınlığa daha yakın kalınlıkta levha dökülebilmiştir ancak levha bombesinin % 2,79-2,82 arasında olduğu ölçülmüştür. Bu değer kabul edilebilir levha bombe değerlerin çok üzerindedir. Levha düzgünlüğü ve profilinin bu döküm şartlarında da elde edilemediği görülmüştür. Merdane bombesinin 228,6 m olarak taşlandığı, 160 mm genişliğinde dört girişli tip ile yapılan üçüncü dökümde, döküm hızı 95 cm/dk, TMMA (set-back) mesafesi 60 mm ve döküm sıcaklığı 725 °C'dir. Levha bombesinin % 0,99-1,08 arasında olduğu ölçülmüştür. Kenarlar arasındaki kalınlık farkı toleranslar içerisinde kalmıştır. Bu dökümde levha düzgünlüğü ve profili istenen değerlerde elde edilmiştir. 6,00 mm kalınlığa sahip levhada, yüzeyde döküm veya tip kaynaklı hatalar görülmemiştir. Başarılı olan döküm ürünü olan levha 4,60, 3,80 ve 3,00 mm kalınlıklarına soğuk haddelenmiştir. 3,00 mm kalınlığında çetalı levha da üretilmiştir. Hadde ürünleri daha küçük parçalara kesilerek tavlama işlemi için numuneler elde edilmiştir. Bu numuneler 260 °C, 285 °C, 310 °C, 340 °C, 370 °C, 400 °C, 430 °C, 460 °C, 490 °C, 520 °C sıcaklıklarında 1, 3 ve 6 saat sürelerinde tavlanmış, mekanik ve mikroyapı özellikleri incelenmiştir. Tavlanan numunelerin çekme-akma mukavemetlerini ve % uzama miktarlarını ölçmek, tavlama sonucu kazandırılan süneklik özelliklerini gözlemlemek için, Zwick Z050 model çekme testi cihazı ile BS EN ISO 6892-1 standardına uygun olarak çekme testleri yapılmıştır. 3,80 mm kalınlığındaki levhayı nihai tav ile H24 temperine getirmek için 370 °C'de 3 saat tavlanması gerektiği görülmüştür. 6 saat süresince uygulanan ara tavda ise bu sıcaklık 310 °C'ye indirilmektedir. 4,60 mm kalınlığındaki levhanın 310 °C ve 340 °C'de 1 saat nihai tav işlemi sonrası H24 temperini sağladığı görülmüştür. Döküm sonrası uygulanan tavlama işleminin malzemeye kazandırdığı özelliklerin belirlenmesi amacıyla numunelerin sertlik ölçümleri Leica VM HT model sertlik cihazı ile yapılmıştır. Test sırasında uygulanan yük ve uygulama süresi sırasıyla 1000 g ve 12 saniye olarak seçilmiştir. Sertlik değerlerinin artan tavlama sıcaklığı ile birlikte azaldığı görülmüştür. 3 saat süresince tavlanan numunelerin süneklik özellikleri tavlama sıcaklığının artmasıyla birlikte artmış, bu durum % uzama miktarındaki artış olarak da ölçülmüştür. Numunelerin eğme açılarını hesaplamak amacıyla üç nokta eğme testleri, Autograph AGS-J marka üç nokta eğme testi cihazı ile ASTM E290-14 standardına göre yapılmıştır. Cihazın uygulama hızı 5 mm / dk olarak seçilmiştir. Test sonrası numunelerin çatlama açıları kıyaslanmıştır. Deformasyon miktarı arttıkça çekme ve akma mukavemetleri artmış, % uzama miktarları azalmış, dolayısıyla çatlak oluşm açıları daralmıştır. Tavlama sırasında meydana gelen yeniden kristalleşmenin etkisiyle numunelerin çekme ve akma mukavemetleri azalmış, süneklik özellikleri ve % uzama miktarları artmıştır. Süneklik artışı, eğme testinde, çatlama ve kırılmanın meydana geldiği açılarda genişleme olarak gözlenmiştir. 520 °C'de tavlanan 3,80 mm, 3,00 mm düz ve 3,00 mm çetalı nununelerde test sırasında çatlama gözlenmemiştir. Tavlanan numunelerin mikro yapı özellikleri de incelenmiştir. Yeniden kristalleşmenin, 4,60 mm kalınlığındaki numune için 400 °C'de, 3,80 mm ve 3,00 mm kalınlıklarındaki numuneler için 400 °C - 430 °C sıcaklıklarında başladığı görülmüştür. 1 saat süresince 310 °C ve 340 °C'de tavlanan 4,60 mm kalınlığında, numuneler H24 tmperini, 3,80 mm kalınlığında 460 °C, 490 °C ve 520 °C sıcaklıklarında tavlanan numuneler ise H26 temperini sağlamıştır. 3 saat süresince 340 °C ve 360 °C'de tavlanan 4,60 mm kalınılığındaki numunler H22 temperini, 400 °C ve üstündeki sıcaklıklarda tavlanan numuneler ise H0 temperini sağlamışlardır. 260 – 340 °C arasındaki sıcaklıklarda tavlanan 3,80 mm kalınlığındaki numunler H26 temperini 370 °C'de tavlanan numune ise H24 temperini sağlamıştır. 6 saat süresince, 430 °C ve üzerindeki sıcaklıklarda tavlanan tüm numuneler H0 temperini sağlamışlardır. Yapılan SEM ve EDS analizleri ile intermetaliklerin şekil ve içerdikleri fazlar incelenmiştir. Döküm numunesine ve tavlanan numunelere yapılan EDS analizleri sonucunda matrisin α(Al-Mg) fazında olduğu, yapıdaki intermetaliklerin Si, Mn, Fe ve Mg içerdiği ve farklı sitokiyometrik oranlarda AlxMgFey ve AlxMgSiyFez, fazlarını oluşturdukları tespit edilmiştir. İncelenen intermetaliklerin morfolojilerinin, çok köşeli Fe yoğun partikülleri ve çin yazısı partikülleri ile eşleştiği görülmüştür. Merkez hattı segregasyonunun görüldüğü bölgeye yapılan elementel haritalama ile merkez hattında Fe ve Si yoğunluğu tespit edilmiştir.
Because of economical and political pressure to reduce green house gases production, the studies for light weighting in automobile design and constructions have increased significantly in the last decades. Due to its excellent weight to strength ratio, automotive companies tends to use AA5xxx alloys like AA5754 and AA5182. Nowadays in automotive industry these alloys are intensively used as vehicle bodies, chassis, wheel trim and BiW (body in white) structure. Other usage areas of AA5754 aluminum alloy are marine construction, shipbuilding and treadplate due to its corrosion resistance and building industries due to its high formability. Flat, wide aluminum alloy sheets are mainly produced by direct chill (DC) cast method. The process is followed by hot and cold rolling to final thickness before final annealing. Twin roll casting (TRC) allows metal strip to be produced directly from molten metal instead of direct-chill casting and subsequent hot roll milling process. This brings advantageous features to TRC, such as low running cost, low energy cost, space saving and low equipment costs. Besides these features it also has some disadvantages, which are inferior mechanical properties and low casting speed. Cooling rate of twin-roll casting is higher then that of other casting methods. AA5xxx aluminum alloys have wide freezing range because of their alloying elements which results some difficulties for them to be produced by twin roll casting method. To manufacture finished aluminum products, twin roll casting is followed by cold rolling process. As an effect of cold rolling process, there occurs strain hardening. At the end of cold rolling it is observed that yield strength of sheet increases and the ductility decreases. To obtain the desired mechanical properties and temper conditions, cold rolled byproduct must be annealed. Various direct strip casting processes, classified as belt caster, single roll caster and twin roll caster, have been developed over the last fifty years. But each has its own limitations. TRC has issues with surface quality and severe segregation at the center line and surface. In this thesis, 1300 mm wide, 6 mm thick AA5754 alloy is successfully produced by twin rolled casting method in PMS Aluminum Plant's in Bursa, Turkey and effects of casting and thermomechanical process parameters are investigated. Since a vertical twin roll caster, without inclination angle, is used, a new design of tip was required for 1300 mm wide casting. Therefore, two different type of tip, which have four entrance for molten metal transfer, was designed and used. Three different casting conditions were investigated. Tip style, casting temperature, set back distance, camber of rolls and casting speed were the parameters changed in each condition. For the cast no 1, rolls were grinded until they got 177.8 µm camber amount. Cast speed, set back distance and temperature were selected respectively 90 cm/min., 64 mm and 715 °C. Tip, which has four times 120 mm entrance gap, was used. Surface flatness of the strip that produced under this conditions was not between desired values. The camber of strip was measured between 2.14 – 2.28 %. On the cast no 2, set-back distance was degreased to 60 mm and the temperature was increased to 725 °C. Camber amount and cast speed were kept same. Tip, which has four times 160 mm entrance gap, was used. Target thickness 6 mm gained but the camber of strip was measured between 2.79-2.82 %. On the cast no 3, set-back distance and temperature was kept same as cast no 2. Rolls were grinded to 228.6 m camber amount and tip, which has four times 160 mm entrance gap, was used. the camber of strip was measured between 0.99-1.08 % which is between desired limits. 8 hours homogenization step was applied at 520 °C to strip produced by the most successful cast trial. After homogenization step, the strip was cold rolled. At the end of twin roll casting and cold rolling processes, plain sheets which have thickness of 4.60 mm, 3.80 mm, 3.00 mm and tread sheet which has a thickness of 3.00 mm were obtained. Each sheets were then cut into smaller pieces. Annealing process was applied to this new small sized sheets. Temperature range was selected from 260 °C to 520 °C. Sheets were annealed at 260 °C, 285 °C, 310 °C, 340 °C, 370 °C, 400 °C, 430 °C, 460 °C, 490 °C, 520 °C for 1, 3 and 6 hours. Laboratory scale electric resistance furnace was used for annealing process. Tensile tests were conducted to evaluate the strength and ductility of the annealed samples. Samples were prepared as mentioned in standard BS EN ISO 6892-1. Zwick Z050 model testing machine was used. According to the result of tensile tests and EN 485-2 and EN 1386 standards, it is seen that different temper conditions are reached at different annealing temperatures. 3.80 mm thick sample gained H24 temper after 3 hours annealing at 370 °C. After 6 hours annealing, sample gained H24 temper at 310 °C. 3.00 mm thick sample which annealed at 340 °C for 3 hours also gained H24 temper. 4.60 mm thick sample gained H24 temper at 310 °C - 340 °C for 1 hour annealing. To observe the annealing response, hardness tests was also applied. Mirror polished cross sections specimens were prepared and Leica VM HT hardness test equipment was used. Load and loading time were selected as 1000 g and 12 second respectively. Three point bending test was applied by using Autograph AGS- J three point bending test equipment. Velocity was selected as 5 mm/min. After cold rolling process the hardness of sheets increased as expected. After annealing process it is seen that hardness of sheets tended to decrease. The results of hardness test are in agreement with tensile properties. The increase of annealing temperature and time, hardness values decreased, elongation (%) increased as well. The bending test was carried on until cracks formed at bending point. Angles that occurred after the bending test were compared. The angle at the point of bending has increased as a result of the increased ductility and the decreased yield strength. No cracks were observed on samples of 3.80 mm annealed at 520 °C, 3.00 mm plain annealed at 520 °C and 3.00 mm tread annealed at 520 °C. Microstructure of samples were observed by optic microscope. It's seen that recrystallization starts at 400°C for 4.60 mm thick sample. For other samples which have 3.80 mm and 3.00 thickness, recrystallization started between 400-430 °C. H24 temper was gained by specimens which have 4.60 mm thickness and were annealed at 310 °C and 340 °C for 1 hour. H26 temper was gained by specimens which have 3.80 mm thickness and annealed at 460 °C, 490 °C and 520 °C for 1 hour. Specimens which have 4.60 mm thickness and annealed at 340 °C and 360 °C for 3 hours gained H22 temper and the ones annealed at 400 °C and higher temperatures gained H0 temper. Amoung 3.80 mm thickness specimens, the ones annealed between 260 -340 °C gained H26 temper and the one annealed at 370 °C gained H24 temper. All specimens that annealed at 430 °C and higher annealing temperatures gained H0 temper. SEM and EDS analysis were applied to investigate the morphology of intermetalics. It is seen that the cast specimen and annealed specimens have α(Al-Mg) phase on matrix. Intermetallics include Mg, Si, Mn, Fe elements and according to stoichiometric ratio of elements, AlxMgFey and AlxMgSiyFez phases were occured. Fe-bearing polygonal particules and chinese script particules were observed. Elemental mapping was applied on the central line segregation area and Fe and Si elements were intensely observed on the central line segregation area.
Because of economical and political pressure to reduce green house gases production, the studies for light weighting in automobile design and constructions have increased significantly in the last decades. Due to its excellent weight to strength ratio, automotive companies tends to use AA5xxx alloys like AA5754 and AA5182. Nowadays in automotive industry these alloys are intensively used as vehicle bodies, chassis, wheel trim and BiW (body in white) structure. Other usage areas of AA5754 aluminum alloy are marine construction, shipbuilding and treadplate due to its corrosion resistance and building industries due to its high formability. Flat, wide aluminum alloy sheets are mainly produced by direct chill (DC) cast method. The process is followed by hot and cold rolling to final thickness before final annealing. Twin roll casting (TRC) allows metal strip to be produced directly from molten metal instead of direct-chill casting and subsequent hot roll milling process. This brings advantageous features to TRC, such as low running cost, low energy cost, space saving and low equipment costs. Besides these features it also has some disadvantages, which are inferior mechanical properties and low casting speed. Cooling rate of twin-roll casting is higher then that of other casting methods. AA5xxx aluminum alloys have wide freezing range because of their alloying elements which results some difficulties for them to be produced by twin roll casting method. To manufacture finished aluminum products, twin roll casting is followed by cold rolling process. As an effect of cold rolling process, there occurs strain hardening. At the end of cold rolling it is observed that yield strength of sheet increases and the ductility decreases. To obtain the desired mechanical properties and temper conditions, cold rolled byproduct must be annealed. Various direct strip casting processes, classified as belt caster, single roll caster and twin roll caster, have been developed over the last fifty years. But each has its own limitations. TRC has issues with surface quality and severe segregation at the center line and surface. In this thesis, 1300 mm wide, 6 mm thick AA5754 alloy is successfully produced by twin rolled casting method in PMS Aluminum Plant's in Bursa, Turkey and effects of casting and thermomechanical process parameters are investigated. Since a vertical twin roll caster, without inclination angle, is used, a new design of tip was required for 1300 mm wide casting. Therefore, two different type of tip, which have four entrance for molten metal transfer, was designed and used. Three different casting conditions were investigated. Tip style, casting temperature, set back distance, camber of rolls and casting speed were the parameters changed in each condition. For the cast no 1, rolls were grinded until they got 177.8 µm camber amount. Cast speed, set back distance and temperature were selected respectively 90 cm/min., 64 mm and 715 °C. Tip, which has four times 120 mm entrance gap, was used. Surface flatness of the strip that produced under this conditions was not between desired values. The camber of strip was measured between 2.14 – 2.28 %. On the cast no 2, set-back distance was degreased to 60 mm and the temperature was increased to 725 °C. Camber amount and cast speed were kept same. Tip, which has four times 160 mm entrance gap, was used. Target thickness 6 mm gained but the camber of strip was measured between 2.79-2.82 %. On the cast no 3, set-back distance and temperature was kept same as cast no 2. Rolls were grinded to 228.6 m camber amount and tip, which has four times 160 mm entrance gap, was used. the camber of strip was measured between 0.99-1.08 % which is between desired limits. 8 hours homogenization step was applied at 520 °C to strip produced by the most successful cast trial. After homogenization step, the strip was cold rolled. At the end of twin roll casting and cold rolling processes, plain sheets which have thickness of 4.60 mm, 3.80 mm, 3.00 mm and tread sheet which has a thickness of 3.00 mm were obtained. Each sheets were then cut into smaller pieces. Annealing process was applied to this new small sized sheets. Temperature range was selected from 260 °C to 520 °C. Sheets were annealed at 260 °C, 285 °C, 310 °C, 340 °C, 370 °C, 400 °C, 430 °C, 460 °C, 490 °C, 520 °C for 1, 3 and 6 hours. Laboratory scale electric resistance furnace was used for annealing process. Tensile tests were conducted to evaluate the strength and ductility of the annealed samples. Samples were prepared as mentioned in standard BS EN ISO 6892-1. Zwick Z050 model testing machine was used. According to the result of tensile tests and EN 485-2 and EN 1386 standards, it is seen that different temper conditions are reached at different annealing temperatures. 3.80 mm thick sample gained H24 temper after 3 hours annealing at 370 °C. After 6 hours annealing, sample gained H24 temper at 310 °C. 3.00 mm thick sample which annealed at 340 °C for 3 hours also gained H24 temper. 4.60 mm thick sample gained H24 temper at 310 °C - 340 °C for 1 hour annealing. To observe the annealing response, hardness tests was also applied. Mirror polished cross sections specimens were prepared and Leica VM HT hardness test equipment was used. Load and loading time were selected as 1000 g and 12 second respectively. Three point bending test was applied by using Autograph AGS- J three point bending test equipment. Velocity was selected as 5 mm/min. After cold rolling process the hardness of sheets increased as expected. After annealing process it is seen that hardness of sheets tended to decrease. The results of hardness test are in agreement with tensile properties. The increase of annealing temperature and time, hardness values decreased, elongation (%) increased as well. The bending test was carried on until cracks formed at bending point. Angles that occurred after the bending test were compared. The angle at the point of bending has increased as a result of the increased ductility and the decreased yield strength. No cracks were observed on samples of 3.80 mm annealed at 520 °C, 3.00 mm plain annealed at 520 °C and 3.00 mm tread annealed at 520 °C. Microstructure of samples were observed by optic microscope. It's seen that recrystallization starts at 400°C for 4.60 mm thick sample. For other samples which have 3.80 mm and 3.00 thickness, recrystallization started between 400-430 °C. H24 temper was gained by specimens which have 4.60 mm thickness and were annealed at 310 °C and 340 °C for 1 hour. H26 temper was gained by specimens which have 3.80 mm thickness and annealed at 460 °C, 490 °C and 520 °C for 1 hour. Specimens which have 4.60 mm thickness and annealed at 340 °C and 360 °C for 3 hours gained H22 temper and the ones annealed at 400 °C and higher temperatures gained H0 temper. Amoung 3.80 mm thickness specimens, the ones annealed between 260 -340 °C gained H26 temper and the one annealed at 370 °C gained H24 temper. All specimens that annealed at 430 °C and higher annealing temperatures gained H0 temper. SEM and EDS analysis were applied to investigate the morphology of intermetalics. It is seen that the cast specimen and annealed specimens have α(Al-Mg) phase on matrix. Intermetallics include Mg, Si, Mn, Fe elements and according to stoichiometric ratio of elements, AlxMgFey and AlxMgSiyFez phases were occured. Fe-bearing polygonal particules and chinese script particules were observed. Elemental mapping was applied on the central line segregation area and Fe and Si elements were intensely observed on the central line segregation area.
Açıklama
Tez (Doktora)-- İTÜ Fen Bilimleri Enstitüsü, 2016
Anahtar kelimeler
Mühendislik Bilimleri,
Engineering Sciences