Nikelalüminat (nio/al2o3) Nanopartiküllerinin Üretimi
Nikelalüminat (nio/al2o3) Nanopartiküllerinin Üretimi
Dosyalar
Tarih
2014-06-12
Yazarlar
Şen, Tunçağ Cihangir
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Fen Bilimleri Enstitüsü
Institute of Science and Technology
Institute of Science and Technology
Özet
21. yüzyılın devrimi ve en önemli teknolojilerinden biri olan nanoteknoloji, malzemelerin atomik ve moleküler boyutta nanobilim ile yepyeni özelliklerinin ortaya konulmasını hedeflemektedir. Ayrıca malzemelerin nanometre düzeyindeki kimyasal, fiziksel ve biyolojik özelliklerin belirlenmesi ve kontrolü ile fonksiyonel malzemelerin, cihazların ve sistemlerin geliştirilmesi de nanoteknolojinin kapsamındadır. Son gelişmeler sayesinde insanoğlunun yaşam standartlarını ve kalitesini yükselten nanoteknoloji, uzay/havacılık endüstrisi, enerji, elektrik/elektronik, yapı ve inşaat, kimya, tıp, çevre ve gıda alanlarında çok yaygın uygulama alanına sahiptir. Önümüzdeki yıllarda bu pazarın daha da genişleyerek artması beklenmektedir. Ülkemizde ise nanoteknoloji henüz yeni olup, başlangıçta sadece bazı teorik çalışmalar ve bireysel girişimler yapılmakta iken Avrupa Birliği ve Devlet Planlama Teşkilatı (DPT) destekleri ile birçok araştırma merkezleri kurulmuştur. En çok araştırma yapılan konular; nanopartiküller, ince filmler, nanokompozitler, yarıiletkenler, ileri teknoloji seramik ve polimerlerdir. Nano yapılı partiküller/malzemeler 100 nm ve daha küçük boyuta sahip olan partikül/malzemeler olarak ifade edilmektedir. Nano boyutta malzemelerin birçok özellikleri değişim göstermektedir. Bunun en önemli nedeni, makro boyutlu malzemeler klasik fizik kanunlarına uyarken nanoyapılı malzemelerin özelliklerinin kuantum mekaniği kurallarına uyması ile açıklanmaktadır. Manyetik, elektronik ve optik gibi birçok özellik, nano ölçekte atomlar arasındaki bağların değişimi ile kolayca değişebilmektedir. Nanopartiküllerin/malzemelerin üretiminde iki temel yaklaşım ön plana çıkmaktadır. Bunlar; yukarıdan aşağıya ve aşağıdan yukarıya yaklaşımlarıdır. Yukarıdan aşağıya yaklaşımında; hacimsel malzemelere mekanik etki uygulanarak malzemeyi nano boyutlara indirgemek esas alınırken, aşağıdan yukarıya yaklaşımında ise atom veya moleküllerden nano boyutlu yapılara ulaşmak temel hedeftir. Her iki yaklaşım birçok nanopartikül üretim yöntemini içermekte olup Ultrasonik Sprey Piroliz (USP) yöntemi, aşağıdan yukarıya yaklaşımı içerisinde yer almaktadır. Sürekli bir teknik olması, ekonomik ve çok yönlü olması bu yöntemin en önemli avantajlarıdır. Endüstriyel uygulama bulmuş bu yöntem temel olarak 4 adımdan oluşmaktadır. Bu adımlar, aerosol oluşumu, boyut çekilmesi, kimyasal reaksiyon ve katı partikül oluşumu/toplanmasıdır. En önemli adım aerosol oluşumudur. Piezoelektrik dönüştürücüde oluşturulan ultrasonik dalgalar başlangıç çözeltisi yüzeyinde geyser noktasına odaklanır ve aerosol damlacıkları havada asılıyken, taşıyıcı ve redükleyici gazlar yardımıyla aerosol fırın atmosferine taşınmaktadır. USP yöntemi ile metalik, intermetalik, seramik ve kompozit yapılardaki nanopartiküller; yüksek saflıkta, dar boyut aralığında, homojen bileşimde, küresel morfolojide ve aglomere olmamış şekilde üretilebilmektedir. Demir grubu metaller demir, nikel ve kobalt nano partikülleri manyetik özelliklerinden dolayı son derece ilgi çekici hale gelmiş ve kendilerine çok geniş uygulama alanı bulmuşlardır. Son yıllarda nikel nano partiküller; nano tüp, nano çubuk, nano prizma ve altıgen tanecik gibi birçok farklı formda üretilebilmektedir. Nikel nano partikülleri yaygın olarak katalitik, iletken ve manyetik malzeme uygulamalarında kullanılmakta ve gelişim göstermektedir. NiAl2O4 nanokompozitin bir diğer bileşeni olan alümina ise genellikle adsorban, moleküler eleme ve filtre, optik, elektronik ve manyetik aygıtlarda, ilaç taşınmasında ve ayrımında, katalitik malzeme olarak kullanılmaktadırlar. Ayrıca alüminyum ve alüminyum spinellerden oluşan kompozit malzemeler havacılık ve otomotiv endüstrileri için de araştırılmaktadır. NiAl2O4 nano kompozit partiküllerinin en önemli kullanım alanlarından biri;metan gazından sentez gazı (CO+H2) üretimidir. Bu çevrim ham petrolün rafinasyonuyla üretilen çeşitli yakıtların (fuel gaz, LPG, benzin, nafta, dizel gibi) üretimlerinin ilk aşamasıdır. Günümüzde sentez gazı üretiminde en çok kullanılan yöntem metanın kısmi oksidasyonudur: CH4 + 1/2 O2 = CO + 2H2 ΔH = -35.9 kJ/mol CH4’ün kısmi oksidasyonunda kullanılan katalitik proses düşük sıcaklıklarda uygulanabilmekte olup; 1 ms gibi kısa reaksiyon sürelerinde ve küçük boyutlara sahip basit reaktörler ile metanın tamamının çevrimine imkan tanımaktadır. Platin grubu metallerin (çeşitli support metalleri üzerinde) katalizör olarak aktif olduğu bilinmektedir (Rh, Ru, Pd, Pt, Ir). Rh en aktifleri ve deaktivasyona karşı en dayanıklı olanlarıdır. Ancak bu tip katalizörler pahalıdır. Endüstriyel açıdan alternatif tipler aranmaktadır. Özellikle alümina destekli Ni katalizörler ucuz olduklarından ve metan çevriminde aktif olduklarından öne çıkmıştır. Nikel alüminat ayrıca yüksek sıcaklık dayanımı ve alkali ile ergimiş alüminyum ataklarına karşı yüksek direnci ile alüminyum elektrolizinde önemli bir anot malzemesi adayı olarak belirtilmekte ve araştırılmaktadır. Bununla birlikte katı oksit yakıt pillerinde anot malzemesi olarak da kullanımı çalışılan konular arasında yer almaktadır. Bu tez çalışmasında; Ultrasonik Sprey Piroliz (USP) yöntemi ile küresel morfolojiye sahip NiO/Al2O3 nanokompozit partikülleri üretilmiş ve yapısal karakterizasyon çalışmaları ile özellikleri belirlenmiştir. Ayrıca üretilen NiO/Al2O3 nanokompozit partikülleri ile fotokatalitik deneyler yapılmış ve sonuçlar yorumlanmıştır. Tez çalışması kapsamındaki NiO/Al2O3 nanokompozit partikül üretimi deneylerinde nikel nitrat ve alüminyum nitrat tuzlarının saf su ile hazırlanmış farklı konsantrasyonlardaki başlangıç çözeltileri kullanılmıştır. 0,1M, 0,2M ve 0,4M başlangıç çözelti konsantrasyonlarından 600 oC, 800 oC, 1000 oC çalışma sıcaklarında 1,7 MHz ultrasonik frekans ile 0,25 l/dak, 0,5 l/dak, 1 l/dak hava debisi koşullarında deneyler gerçekleştirilmiştir. Üretilen nanokompozit partiküllerinin faz analizleri için X-ışınları difraktometresi (XRD), boyut ve morfolojilerinin tespit edilmesi için taramalı elektron mikroskobu (SEM), partiküllerin içerdiği elementlerin oranlarını belirlemek için ise enerji dağılım spektroskopisi (EDS) kullanılmıştır. Karakterizasyon çalışmaları sonucunda, NiO/Al2O3 nanokompozit partiküllerin üretimi için optimum başlangıç çözelti konsantrasyonu ve çalışma sıcaklığı belirlenmiş olup, belirlenen optimum çalışma sıcaklığı olan 800 oC’de miktarsal üretim yapılmıştır. 800 oC’de üretilen partiküllere titreşimli örnek magnetometresi (VSM) ile manyetik analiz yapılmıştır. Manyetik analiz sonunda 800 oC ‘de değişen başlangıç çözeltisi konsantrasyonlarında üretilen partiküllerin oda sıcaklığında benzer manyetik özellikler gösterdiği belirlenmiştir. Ayrıca 800 oC’de üretilen bu partiküllerden hazırlanan numunelere fotokatalitik testler uygulanarak UV-C ışını altında metilen mavisi giderimi oranları tespit edilmiştir. 0,1M, 0,2M ve 0,4M başlangıç çözeltilerinden üretilen nikelalüminat nanopartiküllerinden hazırlanan numuneler için 120 dakika sonunda sırasıyla %9,78, %15,21 ve %9,78 oranında giderim sağlamıştır.
As one of the leading Technologies in 21st century, nanotechnology has revealed new properties of materials at atomic and molecular scale, using lots of the basic sciences. Chemical, physical and biological properties of the nano scale materials are determined and controlled for multifunctional devices and systems within the scope of the nanotechnology. Due to the last advances in the area of nanotechnology, the applications and products of nanomaterials are spread over wide areas such as space/aircraft technology, energy, electrics/electronics, construction, chemistry, automotive, medicine, environmental and food engineering. It is predicted that the nanoctechnology market will reach up to trillions of dollars in the world within following years. Despite of a few theoretical studies and personal initiatives were the starting point of nanotechnology in Turkey, nowadays with the help of European Union and Turkish Government, growing number of research centers can be seen in our country. High-tech ceramics and polymers, thin films, semiconductors and nanocomposites are extensively studied topics in Turkey. Nanoparticles have one dimension that measures 100 nanometers or less. Although their macro-sized equivalents obey classical physics theories, nanostructured materials obey quantum mechanics, quantum laws and theories because of their dimesions. The properties of many conventional materials change when formed from nanoparticles. They can gain extraordinary, unique properties as it has size-dependent quantum effects. There are two main approches to the general production methods of nano-sized materials. These are “bottom-up” and “top-down” approaches. Top-down approach is based on mechanical crushing for sizing materials to nano sized structures. High energy ball milling, electrodeposition and lithography are examples of top-down approach. On the other hand, bottom-up approach is based on physicochemical principles to deposit atoms or molecules as nano scale structure. Sol-gel, inert gas condensation (IGC), flame spray pyrolysis (FSP) and ultrasonic spray pyrolysis (USP) are widely-used methods in bottom-up approach. Amongst the methods of bottom-up approach, ultrasonic spray pyrolysis method comes forward. USP method, which has 4 main steps called aerosol formation, dimension shrinkage, chemical reaction and solid particle collection, is an industrially applied, economic method. The key step is aerosol formation. Ultrasound waves are generated in piezoelectric transducer and transferred into the solution. Due to focusing of ultrasound waves on one point that is called geyser, they can let aerosol drop free in the gas atmosphere. With the help of carrier and reduction gases, aerosol drops will go through the furnace at desired temperature for the chemical reaction. USP allows producing different kinds of nanomaterials such as metallic, intermetallic, ceramic, composit nanomaterials which show high purity, spherical and non-agglomerated morphology, homogeneous composition and narrow size distribution. Nanoscale coating is also possible by USP method. There has been substantial interest in recent years in iron group elements (iron, nickel, cobalt) nano particles due to their important magnetic properties and have made a progress in areas such as microelectronics, optoelectronics, catalysis, magnetic materials and information storage. The nanosized Ni nano particles are used in many catalytic, semiconducting and magnetic applications. Alumina nano particles, other compound of NiAl2O4 composite, have been widely used in electronic, magnetic, filtration, drug delivery and aeronautics applications. The most important usage area of NiO/Al2O3 nanocomposite particles is in syngas production, which is a mixture of H2 ve CO, from methane. Syngas is the raw material of many fuels (fuel gas, LPG, benzine, naphtha, diesel) which are produced by the raffination of crude oil. In recent years, many researches and big investmens have been made on this field. Moreover, the conversion of natural gas (methane) and liquid hydrocarbons to syngas exists in entire fuel processing systems and it is seen as the key step of the hydrogen economy in the future. Nowadays, the most common syngas production method is partial oxidation reforming of methane: CH4 + 1/2 O2 = CO + 2H2 ΔH = -35.9 kJ/mole There are 2 ways to reforming CH4 to syngas, non-catalytic and catalytic process. Because of having operating conditions of 30-100 atm and 1573K, non-catalytic process has a high operation cost. On the other hand, catalytic process can be operated at low temperature and it is more efficient. It has been considered to be the most promise CH4 reforming process in the future. A number of catalysts have proven to be active in POM, mainly platinum group metals on various supports, such as Rh, Ru, Pd, Pt and Ir. Rh has been reported to be the most active and stable catalyst towards deactivation. However, because of the high cost of noble metal-based catalysts, it is clear that, from the industrial standpoint, the development of cheaper and alternative metal-based catalysts would be desirable. In particular, alumina supported Ni catalysts have been widely investigated because of their lower cost and relatively high activity in the partial oxidation of methane. Furthermore, NiO/Al2O3 nanocomposite is an important candidate as anode material in aluminium electrolysis due to its high termal stability and high resistance to alkaline and melt aluminium attacks and it is being investigated as anode coating material in solid oxide fuel cells (SOFCs). In this study, high purity nickel nitrate and aluminium nitrate salts were used to produce spherical NiO/Al2O3 nanocomposite particles via Ultrasonic Spray Pyrolysis (USP) method. High purity metal salts were used to prepare a precursor aqueous solution and concentration of solutions were 0,1M, 0,2M and 0,4M. Air flows of 0,25 l/min, 0,5 l/min and 1 l/min were used to thermal decomposition process at 6000C, 8000C, 10000C. Precursor solution was atomized a high frequency ultrasonic atomizor with a frequency of 1.7 MHz. Yield NiO/Al2O3 nanocomposite particles were subjected to X-ray diffraction analyses (XRD) for phase analysis, crystalline size and crystal structure, Scanning Electron Microscopy (SEM) for particle size and morphology, Energy Dispersive Spectroscopy (EDS) for mass of ratio determination, Vibrating Sample Magnetometer (VSM) for magnetic properties and photoreactor for photocatalytic properties. The morphology of the particles is almost spherical. According to EDS results, it is determined that there are only Ni, Al and O elements with no impurity into the particles. At the end of characterization studies, optimal initial solution concentration and operating temperature were designated. It is clearly seen that, magnetic properties of particles were not changed with the changing concentration and removal rate of the methylene blue under the UV-C ray was determined with using photocatalytic tests.
As one of the leading Technologies in 21st century, nanotechnology has revealed new properties of materials at atomic and molecular scale, using lots of the basic sciences. Chemical, physical and biological properties of the nano scale materials are determined and controlled for multifunctional devices and systems within the scope of the nanotechnology. Due to the last advances in the area of nanotechnology, the applications and products of nanomaterials are spread over wide areas such as space/aircraft technology, energy, electrics/electronics, construction, chemistry, automotive, medicine, environmental and food engineering. It is predicted that the nanoctechnology market will reach up to trillions of dollars in the world within following years. Despite of a few theoretical studies and personal initiatives were the starting point of nanotechnology in Turkey, nowadays with the help of European Union and Turkish Government, growing number of research centers can be seen in our country. High-tech ceramics and polymers, thin films, semiconductors and nanocomposites are extensively studied topics in Turkey. Nanoparticles have one dimension that measures 100 nanometers or less. Although their macro-sized equivalents obey classical physics theories, nanostructured materials obey quantum mechanics, quantum laws and theories because of their dimesions. The properties of many conventional materials change when formed from nanoparticles. They can gain extraordinary, unique properties as it has size-dependent quantum effects. There are two main approches to the general production methods of nano-sized materials. These are “bottom-up” and “top-down” approaches. Top-down approach is based on mechanical crushing for sizing materials to nano sized structures. High energy ball milling, electrodeposition and lithography are examples of top-down approach. On the other hand, bottom-up approach is based on physicochemical principles to deposit atoms or molecules as nano scale structure. Sol-gel, inert gas condensation (IGC), flame spray pyrolysis (FSP) and ultrasonic spray pyrolysis (USP) are widely-used methods in bottom-up approach. Amongst the methods of bottom-up approach, ultrasonic spray pyrolysis method comes forward. USP method, which has 4 main steps called aerosol formation, dimension shrinkage, chemical reaction and solid particle collection, is an industrially applied, economic method. The key step is aerosol formation. Ultrasound waves are generated in piezoelectric transducer and transferred into the solution. Due to focusing of ultrasound waves on one point that is called geyser, they can let aerosol drop free in the gas atmosphere. With the help of carrier and reduction gases, aerosol drops will go through the furnace at desired temperature for the chemical reaction. USP allows producing different kinds of nanomaterials such as metallic, intermetallic, ceramic, composit nanomaterials which show high purity, spherical and non-agglomerated morphology, homogeneous composition and narrow size distribution. Nanoscale coating is also possible by USP method. There has been substantial interest in recent years in iron group elements (iron, nickel, cobalt) nano particles due to their important magnetic properties and have made a progress in areas such as microelectronics, optoelectronics, catalysis, magnetic materials and information storage. The nanosized Ni nano particles are used in many catalytic, semiconducting and magnetic applications. Alumina nano particles, other compound of NiAl2O4 composite, have been widely used in electronic, magnetic, filtration, drug delivery and aeronautics applications. The most important usage area of NiO/Al2O3 nanocomposite particles is in syngas production, which is a mixture of H2 ve CO, from methane. Syngas is the raw material of many fuels (fuel gas, LPG, benzine, naphtha, diesel) which are produced by the raffination of crude oil. In recent years, many researches and big investmens have been made on this field. Moreover, the conversion of natural gas (methane) and liquid hydrocarbons to syngas exists in entire fuel processing systems and it is seen as the key step of the hydrogen economy in the future. Nowadays, the most common syngas production method is partial oxidation reforming of methane: CH4 + 1/2 O2 = CO + 2H2 ΔH = -35.9 kJ/mole There are 2 ways to reforming CH4 to syngas, non-catalytic and catalytic process. Because of having operating conditions of 30-100 atm and 1573K, non-catalytic process has a high operation cost. On the other hand, catalytic process can be operated at low temperature and it is more efficient. It has been considered to be the most promise CH4 reforming process in the future. A number of catalysts have proven to be active in POM, mainly platinum group metals on various supports, such as Rh, Ru, Pd, Pt and Ir. Rh has been reported to be the most active and stable catalyst towards deactivation. However, because of the high cost of noble metal-based catalysts, it is clear that, from the industrial standpoint, the development of cheaper and alternative metal-based catalysts would be desirable. In particular, alumina supported Ni catalysts have been widely investigated because of their lower cost and relatively high activity in the partial oxidation of methane. Furthermore, NiO/Al2O3 nanocomposite is an important candidate as anode material in aluminium electrolysis due to its high termal stability and high resistance to alkaline and melt aluminium attacks and it is being investigated as anode coating material in solid oxide fuel cells (SOFCs). In this study, high purity nickel nitrate and aluminium nitrate salts were used to produce spherical NiO/Al2O3 nanocomposite particles via Ultrasonic Spray Pyrolysis (USP) method. High purity metal salts were used to prepare a precursor aqueous solution and concentration of solutions were 0,1M, 0,2M and 0,4M. Air flows of 0,25 l/min, 0,5 l/min and 1 l/min were used to thermal decomposition process at 6000C, 8000C, 10000C. Precursor solution was atomized a high frequency ultrasonic atomizor with a frequency of 1.7 MHz. Yield NiO/Al2O3 nanocomposite particles were subjected to X-ray diffraction analyses (XRD) for phase analysis, crystalline size and crystal structure, Scanning Electron Microscopy (SEM) for particle size and morphology, Energy Dispersive Spectroscopy (EDS) for mass of ratio determination, Vibrating Sample Magnetometer (VSM) for magnetic properties and photoreactor for photocatalytic properties. The morphology of the particles is almost spherical. According to EDS results, it is determined that there are only Ni, Al and O elements with no impurity into the particles. At the end of characterization studies, optimal initial solution concentration and operating temperature were designated. It is clearly seen that, magnetic properties of particles were not changed with the changing concentration and removal rate of the methylene blue under the UV-C ray was determined with using photocatalytic tests.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2014
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2014
Anahtar kelimeler
Nanopartiküller,
Nanoteknoloji,
Ultrasonik Sprey Piroliz,
Nikelalüminat,
Nanoparticles,
Nanotechnology,
Ultrasonic Spray Pyrolysis,
Nickelaluminate