Su Altı Akıntı Türbinlerinin Hesaplamalı Akışkanlar Dinamiği Modelinin Kurulması Ve Farklı Kanat Tasarımlarının Performanslarının İncelenmesi
Su Altı Akıntı Türbinlerinin Hesaplamalı Akışkanlar Dinamiği Modelinin Kurulması Ve Farklı Kanat Tasarımlarının Performanslarının İncelenmesi
Dosyalar
Tarih
2019-05-03
Yazarlar
Şanlı, Mustafa Gökhan
Süreli Yayın başlığı
Süreli Yayın ISSN
Cilt Başlığı
Yayınevi
Enerji Enstitüsü
Energy Institute
Energy Institute
Özet
Dünyanın enerji ihtiyacı hızlı bir şekilde artmakta ve dünya nüfusu artışı ile sanayi gelişimine bağlı olarak bu ihtiyacın büyümeye devam edeceği öngörülmektedir. Bu talebin karşılanması için alternatif enerji kaynaklarına yönelim olmuştur. Günümüzde, dünyanın enerji ihtiyacının önemli bir kısmı fosil yakıtlardan elde edilmektedir. Kaynak sorunları, yükselen fiyatlar ve çevre sorunları yüzünden güvenilir ve ucuz teknolojiyi kullanarak sürdürülebilir şekilde yenilenebilir enerji kaynakları değerlendirilmektedir. Çoğunlukla değerlendirilmemiş kaynaklar olarak deniz ve okyanuslar birden farklı şekilde güç üretimi için fırsat tanımaktadır. Bunlardan bazıları termal enerji, dalga enerjisi, açık deniz rüzgâr enerjisi, gelgit ve su altı akıntı enerjisidir. Su altı akıntı enerjisi engin, güvenilir ve düzenlidir. Akıntı üreteçleri ile çevreye daha az zarar ile ucuza ve kolayca enerji üretmek mümkündür. Küresel ölçekte yürütülen çalışmalar su altı akıntı enerjisinin ticari ölçekte büyük bir potansiyele, sürdürülebilir ve tahmin edilebilir şekilde sahip olduğunu göstermektedir. Akıntıdan enerji elde etmek için rüzgâr türbinlerine benzer şekilde su altı türbinleri kullanılır. Akıntının kanatları döndürmesiyle hidrokinetik enerji mekanik enerjiye çevrilir ve bu enerji bir jeneratör yardımıyla elektrik enerjisine çevrilir. Çevrim verimini arttırmak için türbin hidrodinamiğini iyi anlamak birincil önceliklidir. Su altı akıntı türbinleri şaft eksenine göre yatay eksenli ve dikey eksenli türbinler olarak iki sınıfa ayrılabilir. Son yıllardaki eğilim, daha yüksek güç kapasitesi ile verim eldesi ve kurulum kolaylığından ötürü yatay eksenli türbinler yönündedir. Bu çalışmada, 3 kanatlı yatay eksenli bir su altı akıntı türbini modeli kullanılarak deneyler yapılan bir makale temel alınmış; makaledeki veriler tezde kurulan hesaplamalı akışkanlar dinamiği modelinden elde edilen sonuçlar ile karşılaştırılmıştır. Makalede uçtan gövdeye kalınlaşan, NACA 63-812'den 63-824'e 17 farklı kanat profilinden üretilmiş bir türbin kullanılmış ve çeşitli açısal hız, akıntı hızı ve kanat hatve açısından güç katsayısı hesaplanmıştır. Türbinin 3 boyutlu modeli hazırlanırken makalede tanımlanan kiriş uzunluğu, hatve açısı ve kesitin konumu esas alınmış ve üç kanat yerine tek bir kanat çizilmiştir. Akış alanını modellemek için bu kanat etrafına üçte birlik kesik konik inşa edilmiştir. Modelin üçte bire düşürülmesindeki amaç hesaplama için gerekli kaynakların düşürülmesidir. Hazırlanan 3B modele ağ yapı kurmak için öncelikle giriş, çıkış, kanat yüzeyleri ve tam türbine tamamlamak için periyodiklik yüzeyleri tanımlanmıştır. Eleman boyutunu düşürmek ve hesaplama başarısını arttırmak için kanadın yakın olduğu akışkan alanında etki küresi tanımlanmış, kanat yüzeyindeki akış değişimini yakalayabilmek için şişme tabakaları oluşturulmuş ve eleman boyutu düşük tutulmuştur. Çözüm için analiz programında öncelikle sınır koşullar girilmiştir ve periyodiklik tanımlanmıştır. Çözüm başarısını sağlamak için türbülans modelleri arasından k-ε, k-ω BSL ve k-ω SST denenmiş ve deney sonuçları ile karşılaştırma sonunda ikinci model ile devam etmeye karar verilmiştir. Kurulan model ile ağ yapıdan bağımsızlık çalışmaları yapılmış ve hata payının kabul edilebilir olduğu seviyede olduğu eleman sayısı ile diğer kanat tasarımlarının incelenmesine geçilmiştir. Kanat tasarımında incelenen değişkenler, kanat profili ile hücum açısına doğrudan etkisi olan hatve açısı olmuştur. Toplamda 5 kanat profili ve 6 hatve açısı, 6 farklı kanat ucu hızı oranında denenmiştir ve her bir profil-açı ikilisi için en yüksek güç katsayısının elde edildiği çalışma noktaları belirlenmiştir. Çalışmanın sonunda, uygulamaya yönelik yüksek performans sağlayan bir tasarım ve çalışma hızı önerilmiştir.
In recent decades, world energy demand has been rapidly increasing and is expected to keep growing due to increasing global population and industrial development. This growing demand has brought attention to exploration of alternative sources of energy. At present, a large majority of world's energy need is being covered with fossil fuels. Due to exploitation of resources, high prices and environmental issues more studies are being performed to develop reliable and low-cost technologies to make use of various renewable energy resources as sustainable alternatives. As largely untapped resources, oceans offer several different forms of energy to be investigated as potential sources for power generation from hydrokinetic energy. These are thermal energy, wave energy, offshore wind energy, tidal energy and marine current energy. Marine current energy is vast, reliable and regular. It is much easier and cheaper to extract using current converters, with less harmful effects to the environment. Various global studies have shown that marine current energy has large potential as a predictable sustainable resource for commercial scale generation of electrical power. To produce energy from water currents, marine current turbines are deployed. They convert kinetic energy from water into mechanical energy when the fluid flow causes rotation of the propellers and a generator attached to the turbine then produces electricity. To make benefit of this resource as much as possible, understanding of the hydrodynamics of energy conversion turbine systems is of primary importance. Marine current turbines can be classified according to their rotational axis orientation with regard to the water flow direction; horizontal axis and vertical axis turbines. In recent years, more research is focused on horizontal axis marine current turbines because they are more efficient as the installation of large vertical axis turbines is troublesome and their electricity generation capacity is less. Horizontal axis turbines can be further broken into two groups: parallel axis turbines, where the axis is parallel to the water stream direction, and perpendicular axis turbines, where the axis is perpendicular to the water stream direction. Numerical simulation and experiments are useful methods to predict and investigate the behavior of marine current turbines, and to analyze different hydrodynamic problems, including turbine performance. There are mainly two approaches for numerically analyzing the performance of a horizontal axis marine current turbine system. One is the blade element momentum theory (BEMT) and the other is computational fluid dynamics (CFD). BEMT models the turbine as a set of isolated two-dimensional (2D) blade elements, to which one can apply the 2D hydrodynamics theory individually and then perform an integration to find the thrust and torque. BEMT was mainly used for the analysis of horizontal axis marine current turbines, but, thanks to the rapid growth of numerical methods and computer resources, CFD applications have been recently abundant. Studies using CFD are done for the analysis of three-dimensional (3D) turbines and for the wake effect of turbines. In the scope of this work, an article which reports the experimental data for a 3-bladed horizontal axis marine current turbine has been selected in order to compare the test data once a CFD model is established and results are obtained. The turbine in the article has a blade design based on NACA 63-812 to 63-824 blade profiles: blade cross-section getting thicker from tip to root in 17 sections. In the same study, power coefficient is calculated using the torque values measured at a dynamometer. Torque on the blades are a function of blade pitch angle and tip speed ratio. A computer aided design (CAD) model of the turbine is created using the details presented in the article. NACA 63-8XX airfoils are created from coordinate files and are placed into positions according to their individual size, pitch angle, distance from center and chord length. A single blade model is obtained accordingly. A ⅓ cone frustrum is then built around the blade model to simulate the fluid domain. Reducing from full turbine model to ⅓ model significantly reduces the resources required for the calculations as the number of cells and nodes created during meshing are reduced. The model is transferred to a meshing program where geometric boundaries are defined and meshing parameters are set. Meshing parameters include defining a sphere of influence which encloses the blade and increases the resolution within; defining inflation layers next to the blade surface in order to capture the flow characteristics near wall surface; defining reduced mesh size to refine near wall elements; defining number of divisions on each blade section to better capture the curvature of the foil geometry. The mesh model is transferred to the solver where the inlet, outlet and wall boundary conditions are input. No slip wall condition at the blade surfaces, uniform velocity at the inlet surfaces and pressure outlet at the outlet surface are defined. Due to ⅓ model, periodicity is also defined on the trapezoid surfaces connecting the inlet and outlet. As the target is to have a model that best approximates the experimental results; turbulence models, pressure-velocity coupling scheme, and spatial discretization terms are investigated in detail. k-ε, k-ω Baseline and k-ω Shear Stress Transport turbulence models are compared among each other and the model with the lowest error, k-ω Baseline, is selected. Literature shows that k-ω SST is the dominant choice. Pressure-velocity coupling is tried between SIMPLE and Coupled schemes. Both methods gave similar results but Coupled method is selected due to low number of iterations and low resource requirement. Under spatial discretization, different gradient methods are tried such as Green-Gauss Cell Based, Green-Gauss Node Based and Least Squares Cell Based. Green-Gauss Node Based is selected thanks to its slightly better approximation. 1st and 2nd order schemes are used under other spatial discretizations terms, namely for pressure, momentum, turbulent kinetic energy and its specific dissipation rate. Based on the results 2nd order scheme is found to be significantly better than 1st order. Once the model is established with its sub-selections a grid independence study is conducted to ensure that the results are not affected by the number of mesh elements or nodes. Following grid independence, the calculation results are compared to the experimental data in the article. Upon finding reasonably good predictions over a wide range of tip speed ratio, the work is carried on with different blade design parameters. These parameters include the foil geometry and the pitch angle of the blade. Five different geometry at six different pitch angles form the design space under investigation. Most of the combinations are analyzed for a wide range of tip speed ratio and optimum working condition for each point is found out. The design with the highest efficiency is then thoroughly investigated with visual aids. Velocity, pressure and turbulent kinetic energy distribution are generated for different blade sections to better understand the flow behaviour.
In recent decades, world energy demand has been rapidly increasing and is expected to keep growing due to increasing global population and industrial development. This growing demand has brought attention to exploration of alternative sources of energy. At present, a large majority of world's energy need is being covered with fossil fuels. Due to exploitation of resources, high prices and environmental issues more studies are being performed to develop reliable and low-cost technologies to make use of various renewable energy resources as sustainable alternatives. As largely untapped resources, oceans offer several different forms of energy to be investigated as potential sources for power generation from hydrokinetic energy. These are thermal energy, wave energy, offshore wind energy, tidal energy and marine current energy. Marine current energy is vast, reliable and regular. It is much easier and cheaper to extract using current converters, with less harmful effects to the environment. Various global studies have shown that marine current energy has large potential as a predictable sustainable resource for commercial scale generation of electrical power. To produce energy from water currents, marine current turbines are deployed. They convert kinetic energy from water into mechanical energy when the fluid flow causes rotation of the propellers and a generator attached to the turbine then produces electricity. To make benefit of this resource as much as possible, understanding of the hydrodynamics of energy conversion turbine systems is of primary importance. Marine current turbines can be classified according to their rotational axis orientation with regard to the water flow direction; horizontal axis and vertical axis turbines. In recent years, more research is focused on horizontal axis marine current turbines because they are more efficient as the installation of large vertical axis turbines is troublesome and their electricity generation capacity is less. Horizontal axis turbines can be further broken into two groups: parallel axis turbines, where the axis is parallel to the water stream direction, and perpendicular axis turbines, where the axis is perpendicular to the water stream direction. Numerical simulation and experiments are useful methods to predict and investigate the behavior of marine current turbines, and to analyze different hydrodynamic problems, including turbine performance. There are mainly two approaches for numerically analyzing the performance of a horizontal axis marine current turbine system. One is the blade element momentum theory (BEMT) and the other is computational fluid dynamics (CFD). BEMT models the turbine as a set of isolated two-dimensional (2D) blade elements, to which one can apply the 2D hydrodynamics theory individually and then perform an integration to find the thrust and torque. BEMT was mainly used for the analysis of horizontal axis marine current turbines, but, thanks to the rapid growth of numerical methods and computer resources, CFD applications have been recently abundant. Studies using CFD are done for the analysis of three-dimensional (3D) turbines and for the wake effect of turbines. In the scope of this work, an article which reports the experimental data for a 3-bladed horizontal axis marine current turbine has been selected in order to compare the test data once a CFD model is established and results are obtained. The turbine in the article has a blade design based on NACA 63-812 to 63-824 blade profiles: blade cross-section getting thicker from tip to root in 17 sections. In the same study, power coefficient is calculated using the torque values measured at a dynamometer. Torque on the blades are a function of blade pitch angle and tip speed ratio. A computer aided design (CAD) model of the turbine is created using the details presented in the article. NACA 63-8XX airfoils are created from coordinate files and are placed into positions according to their individual size, pitch angle, distance from center and chord length. A single blade model is obtained accordingly. A ⅓ cone frustrum is then built around the blade model to simulate the fluid domain. Reducing from full turbine model to ⅓ model significantly reduces the resources required for the calculations as the number of cells and nodes created during meshing are reduced. The model is transferred to a meshing program where geometric boundaries are defined and meshing parameters are set. Meshing parameters include defining a sphere of influence which encloses the blade and increases the resolution within; defining inflation layers next to the blade surface in order to capture the flow characteristics near wall surface; defining reduced mesh size to refine near wall elements; defining number of divisions on each blade section to better capture the curvature of the foil geometry. The mesh model is transferred to the solver where the inlet, outlet and wall boundary conditions are input. No slip wall condition at the blade surfaces, uniform velocity at the inlet surfaces and pressure outlet at the outlet surface are defined. Due to ⅓ model, periodicity is also defined on the trapezoid surfaces connecting the inlet and outlet. As the target is to have a model that best approximates the experimental results; turbulence models, pressure-velocity coupling scheme, and spatial discretization terms are investigated in detail. k-ε, k-ω Baseline and k-ω Shear Stress Transport turbulence models are compared among each other and the model with the lowest error, k-ω Baseline, is selected. Literature shows that k-ω SST is the dominant choice. Pressure-velocity coupling is tried between SIMPLE and Coupled schemes. Both methods gave similar results but Coupled method is selected due to low number of iterations and low resource requirement. Under spatial discretization, different gradient methods are tried such as Green-Gauss Cell Based, Green-Gauss Node Based and Least Squares Cell Based. Green-Gauss Node Based is selected thanks to its slightly better approximation. 1st and 2nd order schemes are used under other spatial discretizations terms, namely for pressure, momentum, turbulent kinetic energy and its specific dissipation rate. Based on the results 2nd order scheme is found to be significantly better than 1st order. Once the model is established with its sub-selections a grid independence study is conducted to ensure that the results are not affected by the number of mesh elements or nodes. Following grid independence, the calculation results are compared to the experimental data in the article. Upon finding reasonably good predictions over a wide range of tip speed ratio, the work is carried on with different blade design parameters. These parameters include the foil geometry and the pitch angle of the blade. Five different geometry at six different pitch angles form the design space under investigation. Most of the combinations are analyzed for a wide range of tip speed ratio and optimum working condition for each point is found out. The design with the highest efficiency is then thoroughly investigated with visual aids. Velocity, pressure and turbulent kinetic energy distribution are generated for different blade sections to better understand the flow behaviour.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Enerji Enstitüsü, 2019
Thesis (M.Sc.) -- İstanbul Technical University, Energy Institute, 2019
Thesis (M.Sc.) -- İstanbul Technical University, Energy Institute, 2019
Anahtar kelimeler
Deniz akıntısı,
Hidrofoiller,
Kanat kesitleri,
Kanat profili,
Sayısal akışkanlar dinamiği,
Su türbinleri,
Sea current,
Hydrofoils,
Airfoil sections,
Airfoil,
Computational fluids dynamic,
Water turbines