Please use this identifier to cite or link to this item: http://hdl.handle.net/11527/5430
Title: Multipl Skleroz Hastalığının Farklı Klinik Alttiplerinin Sınıflandırılması
Other Titles: Classification Of Clinically Different Subtypes Of Multiple Sclerosis
Authors: Turanlı, Eda Tahir
Korkmaz, Didem
Moleküler Biyoloji-Genetik ve Biyoteknoloji
Molecular Biology and Genetics
Keywords: Multiple Skleroz
Sınıflandırma
TAU
GFAP
NFL
MOG
Biyobelirteç
Multiple Sclerosis
Classification
TAU
GFAP
NFL
MOG
Biomarker
Issue Date: 22-Feb-2011
Publisher: Fen Bilimleri Enstitüsü
Institute of Science and Technology
Abstract: Bu çalışma TAU, GFAP, NFL ve MOG proteinlerini ve klinik verileri kullanarak Multipl Skleroz(MS)’un farklı klinik alttiplerinin sınıflandırılmasına odaklanmaktadır. Bu çalışma için kullanılan protein verileri, hastaların Beyin Omurilik Sıvısı (BOS) örneklerinden elde edilmiştir. Farklı sınıflandırma yöntemleri kullanılarak, MS’in farklı klinik alttpleri, protein verileri ve klinik verilere göre sınıflandırılmışlardır. Bu çalışma, Klinik İzole Sendrom(CIS) dan MS e geçişi bu verileri kullanarak tahmin eden ilk çalışmadır. CIS ve Kontrol grubu arasındaki sınıflandırma 87.31%±12.02 (AUC: 0.93±0.09) doğrulukla, MS ve CIS arasındaki sınıflandırma 76.51% ±11.15 (AUC: 0.83 ±0.12) doğrulukla, RRMS ve PPMS arasındaki sınıflandırma 95.77% ±6.63 (AUC: 0.97±0.08) doğrulukla, MS ve Kontrol grubu arasındaki sınıflandırma 92.64% ±7.15 (AUC: 0.97±0.06) doğrulukla, CIS grubundan RRMS grubuna geçiş 86.45% ±12.6 (AUC: 0.89±0.19) doğrulukla tahmin edilmiştir. Bu çalışma, MS’in klinik alttiplerinin tanısı ve prognozunu ve farklı alttipler arası geçişi tahmin etmek için protein ve klinik verileri ve bilgisayar destekli sınıflandırma yöntemlerini kullanan ilk çalışmadır.
This study focuses on the classification of different clinical subtypes of MS using TAU,GFAP,NFL and MOG proteins and clinical data. Protein data used in this study are obtained by lumbar puncture. Using different classification methods, different clinical subtypes of multiple sclerosis were classified according to their protein and clinical data patterns. To the best of our knowledge, there are no other studies in the literature that uses these patterns to predict the transition from Clinically Isolated Syndrome (CIS) to Multiple Sclerosis. MS patients, CIS patients, and control group were classified with 71.43%± 10.95 accuracy (AUC: 0.82± 0.12), CIS and control group were classified with accuracy: 87.31%±12.02 (AUC: 0.93±0.09), MS and CIS were clasified with 76.51% ±11.15 (AUC: 0.83 ±0.12) accuracy, RRMS and PPMS were classified with 95.77% ±6.63 accuracy (AUC: 0.97±0.08), MS and control group were classified with 92.64% ±7.15 (AUC: 0.97±0.06) accuracy. Transition from CIS to RRMS was predicted with 86.45% ±12.6 (AUC: 0.89±0.19) accuracy. This is a novel study using computer aided classification methods with protein and clinical data for diagnostic and prognostic purposes in predicting clinical subtypes of MS and predicting transition between subtypes.
Description: Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2011
Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2011
URI: http://hdl.handle.net/11527/5430
Appears in Collections:Moleküler Biyoloji-Genetik ve Biyoteknoloji Lisansüstü Programı - Yüksek Lisans

Files in This Item:
File Description SizeFormat 
11376.pdf1.49 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.