LEE- Endüstri Mühendisliği Lisansüstü Programı
Bu topluluk için Kalıcı Uri
Gözat
Konu "Advanced scenario planning" ile LEE- Endüstri Mühendisliği Lisansüstü Programı'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeAdvanced scenario planning: New approaches for developing, evaluating, and selecting scenarios with applications(Graduate School, 2024-10-24) Yanmaz, Özgür ; Asan, Umut ; 507162125 ; Industrial EngineeringScenario planning is regarded as a useful tool for strategic planning, particularly in managing uncertainty through the examination of various future scenarios. Since present decisions influence a system's future performance, foreseeing new advancements and problems is critical to the success of future plans. Rather than attempting to accurately predict the future, scenario planning assists in negotiating unexpected and complex developments. Strategic planners can use scenarios to create a more sustainable system by considering how future events can unfold, addressing uncertainties, providing insights into the long-term consequences of decisions, and identifying potential opportunities and threats. A scenario represents a combination of potential developments, which are factors that influence systems in the future. These potential developments are characterized by specific factors and their corresponding levels, all of which have a qualitative nature. In practical scenario planning, the number of possible scenarios can reach into the millions. To formulate effective and actionable plans for the future, it is essential to focus on a manageable subset of scenarios. Therefore, the qualitative nature of the scenarios should first be quantified, and a selection process should be employed to identify a subset of scenarios for further analysis and strategic planning. The studies presented propose a comprehensive methodology for the evaluation and selection of scenarios. Multiple criteria were utilized to assess the scenarios through factor levels from different perspectives. To quantify the factor levels, they were first evaluated with respect to multiple criteria as well as the criteria interactions. Interactions between the criteria are crucial for real-world problems, as decision-making processes often involve these interactions. The Choquet integral was employed to aggregate the evaluations considering criteria interactions, providing numerical values for the factor levels. Since the Choquet integral is defined on measures, a mathematical model was developed to revise the expert assessments thereby obtaining criteria weights that satisfy measure rules. The factor levels were then weighted using a specific criterion (i.e., consistency) to calculate scenario values. After obtaining numerical values for the scenarios, a second mathematical model was developed to select a limited number of high-quality scenarios that best represent potential futures. A total of five criteria were used in the evaluation and selection process. Additionally, a practical application has been conducted to demonstrate the real-world usage of the selected scenarios. Following the selection of scenarios, projects or objectives to be prepared for alternative futures were identified. An actor analysis was performed to determine which stakeholders should collaborate in achieving these objectives within the relevant sectors. This approach ensures that both the evaluation and selection processes are comprehensive, incorporating realistic decision-making dynamics such as criteria interactions and that the selected scenarios can be practically applied in strategic planning.