LEE- Enerji Bilim ve Teknoloji Lisansüstü Programı
Bu topluluk için Kalıcı Uri
Gözat
Sustainable Development Goal "none" ile LEE- Enerji Bilim ve Teknoloji Lisansüstü Programı'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeDemir çelik endüstrisinde toz kömür ve karışımları enjeksiyonunun çevresel etkisinin incelenmesi(Lisansüstü Eğitim Enstitüsü, 2021) Koyunoğlu, Cemil ; Arısoy, Ahmet ; 686069 ; Enerji Bilim ve TeknolojiYüksek fırında kok tüketimini ekonomik sebeplerden ötürü azaltmak üzere geliştirilen toz kömür enjeksiyon teknolojisi, faydalarla birlikte bazı sorunları da beraberinde getirmektedir. Bu güncel sorunlardan önemli olanı, yüksek toz kömür enjeksiyonu nedeniyle kömürün yanma kalitesinin düşmesi ve yanmayan kömür parçacıklarının kok yatağı geçirgenliğini bozmasıdır. Hem maksimum toz kömür enjeksiyonunun sağlanması hem de düşük emisyon kaygıları nedeniyle yanma rejiminin iyileştirilmesi gerekmektedir. En önemli beklentiler, yanma alev kararlılığının sağlanması gibi yanma kalitesini arttıracak önlemler olmaktadır. Yanma kalitesinin arttırılması için yanma koşullarının iyileştirilmesi gerekmektedir. Hesaplamalı akışkanlar dinamiği yöntemi ile çalışan ANSYS-FLUENT çözümü, bu amacı kolaylaştıran önemli bir araçtır. Ayrıca yakıt türünün geliştirilmesi (ön işlemden geçirme, uçuculuğu yüksek külü düşük bir biyokütle ile veya iyileştirilmiş bir kömür ile karıştırarak yakma vb.) de diğer bir yöntem olarak demir çelik endüstrisinde tercih edilen alternatiflerdendir. Tez çalışmasında, yüksek fırında toz kömür yakılmasını simüle eden bir model geliştirilmiştir. Bu model ANSYS-FLUENT paket programı kullanılarak geliştirilmiştir. Modelin doğrulanmasında, literatürden yararlanılarak, pilot ölçekli bir toz kömür enjeksiyon sisteminde (EUR8544 projesi) yapılmış deney sonuçları kullanılmıştır. Geliştirilen ANSYS FLUENT ön-karışmasız yakma model sonuçları bu deneylerle karşılaştırılmıştır. Yapılan karşılaştırma, model ile deneysel proje sonuçlarının önemli ölçüde birbiri ile uyumlu olduğunu göstermektedir. Doğrulanan model yardımıyla optimizasyon çalışması yapılarak, yanma koşullarındaki iyileşmeler tespit edilmiştir. Modelde ve deneyde belirlenen sıcaklık dağılımları karşılaştırmasına göre, ölçülen ve hesaplanan değerler iyi bir uyum içindedir. O2 gaz çıkış yüzdesi dağılımında simülasyonla hesaplanan oksijen yüzdesi biraz daha yüksektir. Yanmanın yoğun olduğu bölgede CO oranı hesapta çok daha yüksek görülmektedir. CO2 oranı deney ve hesapta yaklaşık %14 civarında salınmaktadır. Uçucu çıkış hızı dağılımına göre ölçülen ve hesaplanan değerler iyi bir uyum içindedir. Yanabilen kömür (char) yanma hızı dağılımına göre ölçülen ve hesaplanan değerler önemli ölçüde uyumludur. Sonuç olarak yanma kalitesinin artması için, toz kömür enjeksiyonunun yakma havası ile buluştuğu enjektör çıkışında hava ile birlikte yoğun bir şekilde karışmasının zorunlu olduğu görülmektedir. Kok beslemesi sırasında, yüksek fırınının üstünden beslenen havanın yarattığı basıncın fırında dengelenmesi ve kömür yanma veriminin hesaplanması için, tüyerden yakma havasının kömür ile birlikte giriş hızının ortalama 200 m/s olduğu görülmüştür. Tüyerden YF'ye giren toz kömür parçacıklarının modellenen yanma geometrisinde hava ile etkin bir şekilde karıştığı bölgelerde yanmanın daha etkin olduğu söylenebilir. Nitekim CO2 oranının aynı bölgede fazla çıkması, etkin karışım bölgesinde, ideal yanmanın sağlandığının bir diğer göstergesidir. Kömür besleme debisi, üfleme hızı gibi parametreler modelde değiştirilerek, optimum koşulların belirlenmesine çalışılmıştır. Bununla birlikte model üzerinde kömür ve biyokütle karışımları çalışılarak, biyokütle kullanımı imkanları araştırılmıştır. Günlük ortalama 528 ton kok fırına şarj edilmektedir. Ham kömür ile marangoz talaşı karışımı halinde, toz kömür karışım miktarı günlük 134,7 ton olabilir. Bu da yaklaşık olarak günde 126,9 ton kok tasarrufu anlamına gelir. Ham kömür ile Mısır koçanı karışımı halinde ise, yaklaşık olarak günde 126,9 ton kok tasarrufu sağlanabilmektedir.
-
ÖgeMetal oksit-organik hibrit boşluk taşıyıcılı perovskit güneş pillerinin geliştirilmesi(Lisansüstü Eğitim Enstitüsü, 2022-01-31) Ünal, Yağmur Su ; Yavuz Karatepe, Nilgün ; 301191033 ; Enerji Bilim ve Teknoloji ; Energy Sciences and TechnologiesDünyadaki hızlı nüfus artışı, enerjiye olan ihtiyacı daha da önemli hale getirmiştir. Fosil yakıtlar gibi geleneksel enerji kaynakları sınırlı olup çevre kirliliğine neden olduğundan, alternatif enerji kaynaklarının seçilmesi ve kullanılması kritik önem taşımaktadır. Geleneksel enerji kaynaklarının aksine, güneş enerjisi temiz, güvenilir ve yenilenebilir bir enerji kaynağı olarak öne çıkmaktadır. Perovskit güneş pilleri, yüksek verimlilik, kolay üretim ve düşük maliyetleri nedeniyle umut vaat eden yeni tip fotovoltaik teknolojilerden biridir. İlk üretilen perovskit güneş hücrelerinde, güç dönüşüm verimliliği (PCE) ve kararlılık düşük olmasına rağmen, bugün PCE'de % 25'e kadar bir artış gözlenmiştir. PCE'lerde gözlenen bu hızlı artışın nedeni, yeni perovskit malzemelerin ve üretim tekniklerinin geliştirilmesidir. Bununla birlikte, en çok çalışılan perovskit malzemelerin neme ve ısıya maruz kaldıklarında bozulma eğilimi göstermesi hala bir sorundur. Günümüzde, PSC'lerin kararlılığını arttırmak için birçok strateji uygulanmaktadır. Bu stratejilerden biri, yeni tasarlanmış hibrit boşluk taşıyıcı tabakalar(HTM) kullanarak perovskit katmanını havaya karşı korumak ve cihaz stabilitesini artırmaktır. Perovskit temelli güneş hücrelerinin önem arz eden bileşenlerinden biri de boşluk taşıyıcı tabakasıdır. Bu tabaka, aktif perovskit tabakasında oluşan boşlukların ilgili elektroda aktarımının yanı sıra, üzerinde bulunduğu perovskit tabakasını degredasyona karşı koruması gibi kritik fonksiyonlara sahiptir. Cihaz performansı ve kararlılığının yüksek olması açısından yapılan çalışmaların büyük kısmı bu tabaka üzerinedir. Günümüze kadar yapılan çalışmalarda ağırlıklı olarak Spiro-OMeTAD boşluk taşıyıcı materyal olarak kullanılmıştır. Çözünürlüğünün çok iyi ve boşluk taşıma mobilitesinin yüksek olması en büyük avantajıdır. Ancak, hücrenin ticarileşmesini sağlayacak kriterlere ulaşılamamıştır. Özellikle, UV bölge ışığa karşı kararsız olması, çevre koşulları ile bozulması, düşük kristallanebilirlik ve yüksek sentez maliyeti bu molekülü olumsuz kılmaktadır. Literatürde Spiro-OMeTAD'a alternatif olarak inorganik malzemeler, organik temelli moleküller, polimerler ve metal içeren kompleksler gibi pek çok farklı malzeme boşluk taşıyıcı olarak çalışılmıştır. Ayrıca, tiyofen temelli ditiyenotiyofen (DTT) türevli HTM'ler de alternatif organik yarı iletken malzeme olarak incelenmiştir. DTT, çok çeşitli optoelektronik ve yarı iletken malzemelerin sentezinde önemli bir yapı taşıdır ve türevleri doğrusal olmayan optik kromoforlarda, foto ve elektro ışıldayan cihazlarda ve foto kromik malzemelerde kullanılır. Yumuşak kükürt atomlarının elektron açısından zengin doğası ve rijit düzlemsel π-konjuge yapısı nedeniyle, DTT türevleri gelişmiş boşluk hareketliliğine ve üstün boşluk çıkarma kabiliyetine sahiptir. Ancak, literatürde perovskit güneş hücrelerinde tiyofen türevlerinin boşluk taşıyıcı malzeme olarak kullanıldığı çalışmalar sınırlıdır. Bu nedenle, yeni kaynaşık tiyofen türevlerinin kullanılması ile oldukça pahalı olan Spiro-OMeTAD'a alternatif daha ucuz, kolay sentezlenebilen ve termal olarak daha kararlı boşluk taşıyıcı malzemeler hazırlanmıştır. Tez çalışması kapsamında tasarlanan elektron bakımından zengin kükürt atomlarını içeren kaynaşık tiyofenlerde (DTT-1, DTT-2 ve DTT-3), DTT halkasındaki kükürt atomları hem perovskit yapısında bulunan iyodür iyonları ile etkileşerek daha etkin bir boşluk iletimi sağlanması, hem de perovskit yapısında koordine olmayan kurşun iyonlarını pasifize ederek cihaz performansını iyileştirme hedeflenmiştir. İnorganik boşluk taşıyıcılar her ne kadar sınırlı sayıda olsalar da düşük maliyetleri ve kararlı olmaları nedeniyle hala organik malzemelerle rekabet etmektedirler. Perovskit esaslı güneş hücrelerinde en yaygın kullanılan inorganik boşluk taşıyıcılar CuI, CuSCN, CuAlO2, NiOx, MoOx'tir. İnorganik p-tipi yarı iletken içeren HTM bazlı perovskit güneş hücreleri, organik HTM'lere kıyasla yüksek verim ve uzun süreli stabilite göstermiştir. Bununla birlikte spiro-OMeTAD HTM tabanlı perovskitlerde ise kararlılık daha düşük olmasına ragmen verimler daha yüksektir. Dolayısıyla inorganik ve organik HTM'lerin karıştırılması, stabilitenin ve film kalitesinin arttırılmasına olanak sağlamaktadır. Tez çalışmasının hedefi organik-inorganik hibrit perovskit güneş pillerinin geliştirilmesi ile verim ve kararlılıkta iyileştirme sağlamaktır. Tez çalışması kapsamında, perovskit güneş hücrelerinin güç dönüşüm verimliliğini arttırmak için yeni tasarlanmış boşluk taşıyıcı tabakalar geliştirilmiştir. Bu amaçla, metal oksitler (CuO, MoOx, NiOx) ve kaynaşık tiyofenler sentezlenerek kaynaşık tiyofen-metal oksit hibrit boşluk taşıyıcılı tabakalar oluşturulmuştur. Öncelikle metal oksit HTM'ler perovskit güneş pillerinde kullanılmıştır. En yüksek verim % 8.32 ile NiOx boşluk taşıyıcı yapı ile elde edilmiştir. Organik boşluk taşıyıcı olarak kaynaşık tiyofenlerle (DTT) perovskit güneş pilleri üretilmiştir. Ancak, kaynaşık tiyofen bileşiklerinin hidrofob özellikleri sebebiyle kaplama aşamasında sorun yaşanmış ve homojen filmler elde edilemediğinden pil verimleri çok düşük bulunmuştur. Organik-inorganik hibrit boşluk taşıyıcılı perovskit pil çalışmalarında ise en iyi verim NiOx üzerine DTT-1 kaplanan pil ile elde edilmiştir. Ancak, pil verimi NiOx boşluk taşıyıcılı pile göre daha düşük olduğundan alternatif olarak organik kaynaşık tiyofen bileşikleri, aktif tabakaya katkılanmıştır. DTT-1 katkılı pilin verimi %13.52 olarak tespit edilmiştir. Sonuç olarak aktif tabakaya kaynaşık tiyofen bileşiklerinin eklenmesinin pil verimini artırdığı tespit edilmiştir.