LEE- Mimari Tasarımda Bilişim-Doktora
Bu koleksiyon için kalıcı URI
Gözat
Sustainable Development Goal "Goal 11: Sustainable Cities and Communities" ile LEE- Mimari Tasarımda Bilişim-Doktora'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeA computational interpretative design model for exploring Iranian geometrical patterns(Graduate School, 2024-12-26) Razzaghmanesh, Delara ; Gürer, Ethem ; 523182009 ; Architectural Design ComputingGeometry is one of the distinguishing characteristics of Iranian art and architecture. This valuable art is endangered because the original designers did not provide comprehensive documentation. To preserve this invaluable cultural heritage, designers must understand these geometrical patterns' underlying principles and rules. This knowledge will enable them to generate new patterns accurately and restore damaged ones. As the patterns are complex and contain many mathematical rules, generating them necessitates a transferable knowledge of computational methods. Today, with the development of technology, especially computer science, it is possible to draw complicated geometries, analyze existing geometries, and generate entirely new ones. This research explores the historical and cultural significance of Islamic geometrical patterns, with examples from Iranian architecture, analyzing their traditional design rules and their evolution through time. To address this, computational design techniques as a modern approach to reinterpret and expand the potential of geometric patterns are adopted. Iranian geometrical patterns are categorized into two layers of 2-dimensional and 3-dimensional patterns. From 2-dimensional patterns, some prominent patterns in Iranian architecture are analyzed and generated with computational design methods. The methodology involves identifying the underlying rules of these patterns. An algorithmic design method is employed to generate patterns by automating their intricate relationships and modular structures. This method allowed for the precise reproduction of selected patterns and experimentation with new configurations while adhering to traditional rules. In parallel, a graph-theory approach is introduced as a novel method for pattern generation. This method redefines patterns as networks of nodes and edges, offering a highly flexible and abstract framework for pattern design. The graph-based approach enables a generative and parametric workflow, allowing for more creative and complex variations. The study also compares the effectiveness of these two computational methods, evaluating their strengths and weaknesses. To evaluate these methods, a comparative study using the Analytic Hierarchy Process (AHP) with expert feedback is conducted. The results revealed that while algorithmic design is effective in maintaining traditional integrity, the graph-theory approach allows for greater creative freedom by breaking away from strict rule-based constraints. Both approaches not only faithfully reproduce existing patterns but also enable the creation of entirely new designs, contributing to the preservation and innovation of this valuable heritage. Building on this, the study extended the application of graph theory to explore its potential for generating 3-D patterns for future works. A 3-D Muqarnas was successfully designed using graph-theory algorithms, demonstrating the method's versatility and capability in creating complex, generative 3-D structures. This finding highlights the adaptability of graph theory in pattern generation, offering a robust framework for computational design. This work contributes to the growing intersection of mathematics, architecture, and computational design, offering new pathways for preserving cultural heritage while fostering creative exploration in the digital era. The dissertation shows that cultural heritage could be preserved with computational techniques and encourages designers to use computational tools and methods in their design. Yet, designers should search for ways to expand existing implementations by active participation.
-
ÖgeA decision support model based on Bayesian belief network to evaluate urban vibrancy(Graduate School, 2023-08-24) Bakraç Kırdar, Gülce ; Çağdaş, Gülen ; 523172004 ; Architectural Design ComputingUrban liveability can be accepted as an umbrella term that covers all the factors make place a good neighborhood to live in. This thesis study recognized the versatility of urban liveability, and puts emphasis on vibrancy in the context of liveability. This research takes place value measures as reference to examine vibrancy. The selected categories are economic, image and use value of place. Economic place value draws from Carmona's (2019) compiled evidence, use value from Jacobs' (1961) diversity generators and Montgomery's (1998) indicators of successful urban places, and Nasar's (1998) likeability features for visual perception of urban places. Eminönü Central Business District (CBD) in Istanbul's Historical Peninsula serves as the study's testbed for exploring vibrancy-focused liveability. The thesis aims to present a data-driven decision support system to evaluate vibrancy-focused liveability dimensions. This study adopts a knowledge discovery process with Bayesian Belief Network (BBN) to handle the complexity of the liveability concept. The thesis study questions how are the relationship patterns between urban vibrancy measures, which parameters can be prioritized based on this relationship network, and what kind of implications can be made regarding the urban vibrancy of the site. The objectives of the study are to develop a comprehensive measurement technique using multiple data types for the measurement of urban vibrancy; to reveal the relationship network of vibrancy parameters; and to improve the decision-making process according to relationship network. The research hypothesis posits that the big data supported knowledge discovery process can be useful to reveal complex urban dynamics, and support vibrancy decisions together with participation. Methodologically, this study adopts quantitative research. This study presents exploratory research through the use of big data and BBN analysis to examine the vibrancy focused liveability with spatial, functional and perceptual attributes. The thesis study explores the relationship through BBN and explores causality through the consultation of expert opinion. A causal knowledge discovery process involves data collection, information retrieval, and data analysis. Data collection involves techniques like web scraping and urban map digitization; while information retrieval encompassing quantitative methods which are entropy-based indices, clustering algorithms, image segmentation, and surveys. Data analysis employs BBN learning algorithm to unveil probabilistic relationships between place value measures, and calibration of BBN network with expert participation via surveys. Spatial distribution results and BBN analyses provide insights into vibrancy levels and priority measures to enhance place value. The results demonstrate that urban function and accessibility outweigh urban form and socio-demographic features in determining economic value (land price). Activity characteristics and heritage within accessibility enhance use value (user density), while nature and cultural elements positively impact image value (likeability), countered by negative influences from signboards and building enclosures. Economic value BBN reveals that land use diversity has the most substantial impact on land price, followed by building density, other land use characteristics, accessibility, and urban form features. The use value BBN model highlights the significance of heritage visitation, density, and activity accessibility in hotspot user density, followed by activity diversity, density, and distribution. The image value BBN model indicates that increased urban greening, vistas, and cultural landscapes enhance likeability, while building enclosures and façade signboards have negative effects. Tahtakale, Beyazıt, Eminönü, Sirkeci, and Sultanahmet are highly vibrant districts, and Hobyar, Rüstempaşa, Alemdar, Binbirdirek, Sultanahmet, and Beyazıt are highly vibrant neighborhoods. In the survey, expert participants rank place values, determine causality and correlation of relationships between parameters. Correlations between BBN and survey data validate the creation of a causal map. The correlation between BBN and survey data confirms that survey data can be used to create a causal map. Regarding the causal relationships, prioritizing urban function and accessibility measures in economic value metrics will aid in developing real estate strategies. To enhance use value, the activity diversity and accessibility, attractiveness and visitation of heritage, can be prioritized, which contribute on place attractiveness decisions. To improve image value, urban greening, landscape and building façade, and signboard density measures can be prioritized, which contribute on maintenance decisions of the streetscape. The decision support system (DSS) contributions to urban planning and design have been assessed with what-if analysis using spatial BBN tools and urban design workshop. This data-driven approach supports conceptual decisions in urban design, and prioritizes decisions in urban planning. This research aims to assist decision-makers in creating vibrant neighborhoods through data-driven methods. This study would be useful for urban planners to generate inclusive spatial strategies by considering human activity factors within physical attributes to create vibrant neighborhoods.
-
ÖgeBridging knowledge across architectural heritage and digital fabrication technologies(Graduate School, 2024-10-17) Hamzaoğlu, Begüm ; Özkar, Mine ; 523172001 ; Architectural Design ComputingThis thesis investigates the integration of computational making approaches within architectural heritage studies by exploring workflows for customized digital fabrication toolpath generation, with a focus on case studies involving carved stone ornaments from selected monumental buildings in medieval Anatolia. Medieval Anatolian architectural ornaments reflect a rich design culture that merges craftsmanship with formal experimentation. On-site traditional construction, performed by skilled artisans, involves more than just executing predefined designs; it transforms abstract design ideas into a cohesive making process. The geometric decorative patterns have been adapted across various materials, such as wood, stone, brick, tile mosaic, and stucco, over an extensive geographical range. Despite the material variety, the diverse craft tools and methods used to create these intricate patterns remain under-examined, with most existing literature emphasizing their abstract geometric shapes rather than construction techniques. The literature on computational design is increasingly highlighting the importance of integrating materiality and craft knowledge into computational models, considering the act of making as a fundamental component of design ideation. While grammar-based techniques have been introduced and diversified methodologies, their application within heritage contexts is still limited and not fully developed. In the past two decades, digital fabrication has emerged as a new medium in cultural heritage, prompting new discussions on materiality. The focus of research is shifting from acquiring high-precision morphological data to emphasizing the accuracy and authenticity of materials and construction techniques, thus opening new avenues for exploration. Existing studies have predominantly utilized standardized prototyping methods designed for industrial mass production, which may not adequately capture the nuances of traditional craftsmanship. Consequently, further research is necessary to develop tailored fabrication technologies that offer deeper insights into historical construction techniques. While much experimental work on customized robotic stone-working has concentrated on technological challenges, integrating these advancements with the historical contexts and stylistic variations of stoneworking cultures holds significant potential. Bridging the gap between technology-driven and knowledge-driven research is crucial for effectively incorporating digital fabrication technologies into architectural heritage studies. Although accelerating processes and improving accuracy through automation are the primary aims of digitizing workflows, digital fabrication technologies also introduce systematization in architectural construction. Innovations in digital fabrication tools and software have enabled integrated data flows in architectural construction by allowing parametric fabrication toolpaths associated with geometric models and facilitating customized automation techniques. This thesis frames the emerging role of digital fabrication in architectural heritage research as formalizing construction knowledge and thus generating and conveying new layers of information about material forms and construction processes. The medieval stone-carved ornamentation styles of Anatolia are unique to the region yet remain inadequately documented. In the 13th century, Anatolia witnessed the emergence of a new aesthetic in stone ornamentation, distinguished by its plasticity and curvilinear forms. This distinctive style emerged from a fusion of the region's abundant stone resources and skilled masons with geometric pattern design traditions. It serves as an exemplary illustration of how materials and craftsmanship can drive the evolution of a specific visual style. Computational making approaches offer promising avenues to enhance our understanding of these understudied generative processes in crafts. In the two workflows developed in this thesis, formalizing the relations between part-whole relationships and subtractive actions enabled the identification of variations in stone carvings. The first case study employs a grammar-based approach with a focus on rule formalizations. The workflow involves transferring information from the making rules to parametric digital models. The outputs include digital representations of the carved shapes, newly generated boundary shapes, G-code for CNC milling, and simulations of the cutting tool movements. Three parametric models corresponding to the three types of rules were developed as custom user objects in the Rhinoceros-Grasshopper modeling environment. Consequently, making rule formalizations in the developed workflow are not merely representational but also actively inform the digital fabrication process. This case study proposes a novel application of making grammars in architectural heritage research, offering several key insights. First, making grammars provide a framework to analyze formal relationships among abstract shapes, material forms, and construction parameters. Formalizing making rules enables the integration of visual and spatial computation into the study of implicit formal relations between geometric compositions, tools, and crafting techniques in historical artisan traditions. In the context of specific medieval Anatolian stone carvings, rule formalizations made it possible to examine the interrelations among geometric patterns, cutting tool profiles, and cut depths. Additionally, combining making rules with shape rules introduces a broader range of outcomes within craft processes. Breaking down the construction sequence into computational steps also helps to distinguish historical stylistic variations, which partly stem from similar carving techniques. Ultimately, making grammars enable the formalization of processes through a multimodal language, recognizing the various layers of knowledge embedded in making. In the second case study, a holistic workflow is explored to facilitate a continuous data flow from photogrammetric survey data of historical stone ornaments to digital and physical parametric reconstructions. This approach involves developing two parametric models for robotic milling toolpath generation. The engraved column sample from the Hunat Hatun Complex serves as an example for modeling carved forms, drawing from the two-dimensional geometric patterns typical of the Anatolian Seljuk period. The spiral-fluted columns from the Karatay Madrasa, Sahabiye Madrasa, and Sultan Han illustrate the variations of three-dimensional forms that can emerge from similar design layouts when using different cutting orientations. Using a custom algorithm to calculate robotic milling toolpaths within a parametric modeling environment enables precise and integrated data flows to modeling historical structures. This approach makes it possible to uncover historical construction parameters embedded in ornamental variations from a specific era, something standard CAM methods cannot achieve. Adding a rotary mechanism as an external axis provided new insights into the formation of various spiral-fluted columns in the case study. Experiments adjusting cutting orientations by changing the angles between the rotary axis and the cutting tool on the cylindrical surface demonstrated that form-making evolves throughout the construction phase of medieval stone ornamentation rather than adhering to a pre-set design. The developed workflow uses KUKA|prc parametric robot control to generate and simulate robot toolpaths, enabling the exploration of multiple parameters, such as cutting orientation, geometric ratios, and tool attributes that affect material outcomes. Developing customized robotic fabrication not only achieves rapid, precise, and efficient fabrication but also transcends visual resemblance, conveying aspects of materiality, tactile qualities, and material behavior in historical structures. By programming robotic movements within widely adopted parametric software, the workflow integrates established optimization and accuracy-testing algorithms, enabling the validation of geometry and fabrication parameters based on actual material results. This system exemplifies how parametric robotic fabrication can systematize the modeling of historical stone ornamentation, providing measurable and comparable data on parameters and material outcomes.
-
ÖgeGeleneksel kırsal bölge mimarisi için parametrik H-BIM uygulamalarının değerlendirilmesi; Vernabim(Lisansüstü Eğitim Enstitüsü, 2023-09-13) Savaşkan, Mustafa Onur ; Özener, Ozan Öner ; 523152004 ; Mimari Tasarımda BilişimKırsal mimari, yıllar boyu süren tecrübelere dayanan, yaşamın içerisinde şekillenmiş ve deneyimlenmiş pek çok bilgi ile yüklüdür. Yapıldığı dönem ve yörenin tasarım ve inşaat teknolojisi ile harmanlanmış mekânsal, ekonomik, ekolojik, sosyal ve politik pek çok faktörün bir araya gelmesi ile şekillenmiştir. Kırsal mimarinin bu bağlamda; tasarım yaklaşımları, yapıldığı coğrafyadaki kentsel ve bağlamsal ilişkileri, yerel yapım teknolojileri, iklim koşullarına uyumlu yapı tasarımları ve mimari özellikleri açılarından oldukça önemli bir kültürel birikimi içerisinde barındırdığı görülmektedir. Ayrıca bu basit olarak nitelendirilebilecek yapılar birçok anlamda sürdürülebilir bir mimarlığın genetik kodlarını da üzerlerinde taşımaktadırlar. Bu yapıların yapımı sırasında kullanılan çözümler, işçilik, malzeme ve performans özellikleri ile yereldeki yapısal bilgi birikimi bu binaların kültürel değerlerinin farklı bir boyutunu da oluşturmaktadır. Kültürel miras değeri taşıyan bu binaların çevresel ve sosyo-ekonomik değişik nedenler ile kaybolması söz konusu kültürel birikimin kaybedilmesi gibi olumsuz durumları da gündeme getirmektedir. Miras niteliğindeki yapıların mimari anlamda korunması için belgeleme konusunda mevcut uygulamalar hem geleneksel hem de çağdaş belgeleme stratejilerini içeren yaklaşımlara sahiptir. Günümüzde artık yaygın biçimde kullanılmakta olan dijital teknolojilerin yardımı ile korunması gereken yapıların üzerlerinde taşıdığı bilgilerin toplanabilmesi, koruma, yaşatma ve kullanım anlamında hassasiyet, doğruluk ve hız gibi çeşitli avantajlar sunmaktadır. Yerel mimari örneklerin üzerinde yapılacak koruma çalışmalarının dijitalleşmesi ayrıca çalışmaların yorumlanabilmesini, analiz edilmesini, kullanım alanının yayılmasını ve orijinal yapının sanal bir temsilinin elde edilmesini sağlamaktadır. Bu çalışmaya önem kazandıran bir nokta dijital yöntemler yardımı ile yapım sistemleri, bileşenleri ve eleman özellikleriyle birlikte yapıların form ve strüktürel kurgusu hakkında veri toplanabilmesidir. Bahsedilen dijital yöntemler çalışmada öncelikle veri toplama alanında kullanılan fotogrametrik yöntemlerdir. Bu sayede yapıların barındırdığı geometrik ve geometrik olmayan veriler temassız biçimde elde edilmekte ve gerçekeğe dayalı biçimde kütle modelleri oluşumu sağlanmaktadır. Ardından toplanan veriler ve onlardan elde edilen biçimsel ve görsel veriler teknoloji odaklı bir belgeleme sürecinde belirlenen BIM metodolojisine tabi tutularak, yazılımlarının sunduğu araçlar yardımı ile yüksek bir kullanım potansiyeline sahip parametrik objelere dönüştürülmektedir. Ayrıca BIM altyapısının sağladığı parametrik bileşenler ve akıllı nesne yaklaşımları yüksek bir performans ve geri bildirim mekanizması sağlanmaktadır. Temelinde yeni bina üretimi odaklı olan BIM araçlarının tarihi yapılardaki koruma uygulamaları için birçok yeni olanağa sahip olduğu, bu alanda da yeni stratejiler ve yaklaşımlar geliştirildiği yapılan analiz ve vaka çalışmaları aracılığıyla görülmektedir. Bu araştırma ve uygulama alanına dair bir yaklaşım olarak karşımıza Tarihi Yapı Bilgi Modelleme (H-BIM) çıkmaktadır. Araştırmanın amacı, kırsal mimari bağlamında yapım sistemleri konusundaki zenginlik ve teknik bilgi birikiminin dijital yöntemler yardımıyla elde edilmesi, tanımlanan H-BIM uygulama planı ile parametrik bir yaklaşımla belgelenmesi, yorumlanması, detay ve yapı sistemlerine ait parametrik, modifiye edilebilir modeller ve sistem yaklaşımlarının oluşturulmasıdır. Bu araştırma yöntem ve kapsam olarak irdelendiğinde, kırsal mimari bağlamında belirlenen H-BIM metodolojisi içerisinde, erişimi nispeten kolay yazılım ve donanımsal araçlarla yürütülecek dijital fotogrametrik yöntemler ve parametrik meta modelleme altyapısı ile nesneden sisteme şeklinde ilerleyen bir H-BIM model sentezi sunmaktadır. Donanım olarak sahadan veri elde etme aşamasında kişisel kullanıma uygun insansız hava aracı ve cep telefonu kameraları kullanılmıştır. Tüm süreç, henüz ilk aşamada geliştirilen H-BIM uygulama planı çerçevesinde yürütülmüştür. Çalışmanın iş akışları, görevler, prosedürler ve aşamalar bu çerçeve ile belirlenmiştir. Araştırmada saha çalışmaları ile başlatılan uygulama aşaması belirlenen metodoloji çerçevesinde ilerletilmiştir. Yürütülen H-BIM süreci ve sonucunda ortaya koyulan zengin içerikli vaka çalışmaları ile ele model tanımlanmış ve işlerliği test edilmiştir. Çalışma yerel koruma uygulamaları adına uygulanabilir, pratik ve tekrarlamaya müsait bir H-BIM uygulama metodolojisi sunmaktadır. Erişilebilir dijital fotogrametri ve parametrik BIM modelleme yöntemlerinin bir arada kullanılması ile ortaya bilgi içeriği yüksek meta-modellerin çıkarılması amaçlanmış ve yapılan uygulama ile çalışan bir model ortaya koyulmuştur. Çalışma sonucu ortaya çıkan bulgular ve deneyimler, miras niteliği taşıyan kırsal yapıların belgelenmesi, korunumu ve devamlılığının sağlanması açısından önem arz eden bir model geliştirildiğini gösterir niteliktedir.
-
ÖgeKarma gerçeklik ortamında parametrik tasarım ve robotik fabrikasyon yöntemi(Lisansüstü Eğitim Enstitüsü, 2023-10-03) Buyruk, Yusuf ; Çağdaş, Gülen ; 523162007 ; Mimari Tasarımda BilişimProgramlanabilir yapısı ve geniş hareket uzayında çalışabilme özellikleri ile endüstriyel robotlar son yıllarda sayısal üretim alanında yapılan çalışmalarda kullanılmıştır. Endüstriyel robotların sayısal üretim alanında kullanılması robotik fabrikasyon olarak adlandırılır. Robotik fabrikasyon işlem adımları, üretimi yapılacak tasarım ürününün üç boyutlu olarak modellenmesi ile başlar. Sonra sırasıyla, üretim sırasında endüstriyel robotun izlemesi gereken takım yolu hesaplanır, endüstriyel robotun ve üretim ortamının simülasyonu yapılır, robot kodu endüstriyel robota yüklenir ve yürütülür. Her farklı tasarım ürünü için robotik fabrikasyon işlem adımları baştan itibaren tamamlanarak farklı bir robot kodu üretilir. Tasarım ürünü üzerinde yapılacak küçük bir değişiklik için bile bu işlem adımlarının yeniden ve en baştan tekrarlanması gerekir. Parametrik tasarım araçlarının gelişimi ile birlikte endüstriyel robotların sayısal üretim alanında kullanılması alanında da dönüşüm yaşanmıştır. Parametrelerin değiştirilmesi ile tasarım ürününün alternatifleri üretilebildiği gibi bu ürünlerin üretimi için gereken robot kodu da parametrelerin değiştirilmesi ile üretilebilir. Bu sayede tasarım aşaması ve üretime hazırlık aşaması parametrik tasarım ortamında bütünleştirilir ve parametreler ile kontrol edilebilir. Karma gerçeklik araçlarının robotik fabrikasyon uygulamalarında kullanılması ile sayısal üretim alanında yaşanan dönüşüm ileriye taşınabilir. Kullanıcılar tasarım ve üretim parametrelerine üretim anında da erişebilir, tasarım ve üretim alternatiflerini görsel ve uzamsal geribildirim alarak modelleyebilir ve keşfedebilir. Tasarım ve üretim süreci ile etkileşime girebilir ve bu süreci diğer tasarımcılar ile işbirliği içinde yürütebilir. Bu çalışmada parametrik tasarım araçlarının ve endüstriyel robotların karma gerçeklik araçları ile kullanılabildiği, hem tasarım sürecinin hem de üretim sürecinin karma gerçeklik ortamında etkileşimli olarak yürütülebildiği, tasarımcıların üretim ve tasarım süreçlerini tümleşik olarak birlikte yürütebildikleri bir yöntemin geliştirilmesi amaçlanmıştır. Tez çalışması kapsamında, parametrik tasarım ve robotik fabrikasyon karma gerçeklik ortamında bütünleştirilmiştir. Bu sayede tasarımcılar önerilerini parametrelerle kontrol edebilir ve üretimden önce karma gerçeklik ortamında uzamsal geribildirim alarak modelleyebilir, bu süreci farklı tasarımcılarla işbirliği içerisinde yönetebilir. Önerilen yöntem ile parametrik modelleme adımından üretim adımına kadar olan tüm adımlar karma gerçeklik ortamında bütünleştirilerek oluşturulur. Böylece tasarımcı karma gerçeklik ortamında hem tasarım hem de üretim sürecini etkileşimli olarak sürdürebilir. Tasarımcı tasarım ve üretim anında parametreleri değiştirebilir ve sonraki adımlar kullanıcı müdahalesine gerek kalmadan güncellenir ve robotik fabrikasyon insan-robot işbirliği ile kesintisiz olarak devam edebilir. Bu çalışma, tasarım ve üretim ortamında endüstriyel robotların karma gerçeklik ortamında kontrol edilebilmesine ve üretim ortamında insanlar ile birlikte işbirliği içinde çalışabilmesine olanak sağlar. Ayrıca tasarım ve üretim anında parametrik tasarım araçlarının karma gerçeklik ortamında kullanılabilmesi sayesinde kullanıcılara kitlesel özelleştirme olanakları sunulur. Mevcut yöntemlerden farklı olarak, tasarım ve üretim için gereken işlem adımlarını azaltarak tasarımdan üretime kadar olan süreci kısaltır. Karma gerçeklik ortamının sağladığı deneyim, bilgisayar ekranı ile etkileşimden daha zengindir. Parametrik tasarımdan robotik fabrikasyona kadar tüm süreç el hareketleriyle kontrol edilebildiği için gerçeklik algısı daha yüksektir. Parametrik modelleme, takım yolu oluşturma, robot kodu oluşturma ve robotik üretim adımlarında, tasarım ve üretim ortamının dijital ikizi holografik içerik olarak gerçek dünya görüntüsünün üzerine eklenerek tasarımcıya sunulur. Bu sayede tasarımcı, üretim ortamıyla fiziksel ve sanal etkileşime girerek tasarım ve üretim adımlarını değiştirebilir ve bu süreçleri diğer tasarımcılar ile işbirliği içinde yönetebilir. Birinci bölümde endüstriyel robotların üretim süreçlerinde kullanılmasının üretim devrimleri ve üretim süreçleri üzerindeki dönüştürücü etkisine değinilmiş ve endüstriyel robotların sayısal üretim uygulamalarında insanlarla işbirliği içinde kullanılması konusuna yer verilmiştir. Bu bölümde tezin konusu ve kapsamı tanımlanmış, yapılan araştırmanın motivasyonu, amacı ve sayısal üretim alanındaki çalışmalara ve yöntemlere katkısı açıklanmıştır. Bilgisayar teknolojilerinin ve parametrik tasarım araçlarının tasarım ve sayısal üretim alanında kullanılmaya başlanmasıyla birlikte bu alanda yaşanan dönüşüm açıklanmıştır. İkinci bölümde parametrik tasarım kavramı, parametre kavramı, parametrik tasarım yaklaşımının ve parametrik tasarım araçlarının tarihsel süreçte gelişimi açıklanmıştır. Tezde, parametrik tasarım araçlarının karma gerçeklik ortamında kullanıldığı bir sayısal üretim yöntemi önerilmiştir. Tezde önerilen yöntemde uygulanabilecek parametrik örüntü örnekleri bu bölümde sunulmuştur. Ayrıca bu bölümde bir üretken sistem olan biçim grameri yönteminin başlangıç, dönüşüm ve sonlandırma kurallarının parametrik tasarım ortamında parametreler ile kontrol edilebileceği ele alınmış ve standart biçim grameri dönüşüm kuralının parametrik tasarım ortamında oluşturulan tanım dosyası örneği sunulmuştur. Üçüncü bölümde endüstri devrimlerinin tarihsel gelişimine yer verilmiştir. Bu bölümde Endüstri 4.0 üretim devriminin tanımı, özellikleri ve bileşenleri üzerinde durulmuş ve tez çalışmasında önerilen yöntemin Endsütri 4.0 üretim hedefleri ile yakınlığı konu alınmıştır. Dördüncü bölümde araştırmaya yönelik literatür çalışmasından örnekler sunulmuştur. Bu bölümde ilk olarak taş işçiliği ve ahşap oymacılığı gibi el becerilerinin bile endüstriyel robotlar ile yapıldığı çalışmalar sunulmuştur. Sonra, endüstriyel robotların sayısal üretim uygulamalarında insan-robot işbirliği ile kullanıldığı çalışma örnekleri ve karma gerçeklik araçlarının sayısal üretim alanında kullanıldığı çalışma örnekleri verilmiştir. Son olarak, hem karma gerçeklik araçlarının hem de endüstriyel robotların sayısal üretim alanında birlikte kullanıldığı çalışma örnekleri verilmiştir. Beşinci bölümde endüstriyel robotların sayısal üretim çalışmalarında kullanıldığı robotik fabrikasyon programlama yöntemleri sunulmuş ve ilk olarak çevrimdışı programlama yöntemi açıklanmıştır. Çevrimdışı programlama yönteminin iş akışı sunulmuş ve bir çevrimdışı programlama örneği olan Gramazia ve Kohler tarafından gerçekleştirilen Pike Loop Projesi'nde endüstriyel robot çevrimdışı programlama adımları açıklanmıştır. Daha sonra parametrik robot kontrol araçları ile endüstriyel robot programlama yöntemi sunulmuş ve bu yöntemin iş akışı açıklanmıştır. Brell-Cokcan ve Braumann tarafından geliştirilen KUKA|prc parametrik robot kontrol eklentisi kullanılarak gerçekleştirilen Steel Bull of Spielberg çalışması üzerinde parametrik robot kontrol araçları ile programlama adımları açıklanmıştır. Ayrıca, parametrik robot kontrol araçları ile programlama yönteminin çevrimdışı programlama yöntemine göre avantajları ve sayısal üretim alanında sunduğu yenilikler de bu bölümde açıklanmıştır. Altıncı bölümde tez çalışmasının yöntemi ve tez kapsamında yapılan çalışmalar açıklanmıştır. Tezde önerilen karma gerçeklik ortamında parametrik tasarım ve robotik fabrikasyon yöntemi açıklanmış; yöntemin iş akışı, bu yöntemde endüstriyel robot, parametrik tasarım yazılımı ve karma gerçeklik aracının rolleri açıklanmıştır. Tezde önerilen yöntemin gerçekleştirilebilmesi için beş ayrı yazılım geliştirme görevi tamamlanmış ve bu yazılım geliştirme görevleri bu bölümde açıklanmıştır. Tez çalışmasında kullanılan endüstriyel robot manipülatörünün, endüstriyel robot kontrol ünitesinin, endüstriyel robot el kumanda panelinin, robot programlama dilinin ve karma gerçeklik cihazının teknik özelliklerine bu bölümde yer verilmiştir. Karma gerçeklik aracı ve parametrik tasarım programı arasında kurulan REST API iletişimi ve endüstriyel robot ile parametrik tasarım programı arasında kurulan TCP API iletişimi için geliştirilen yazılımlar açıklanmış ve tez çalışması kapsamında bu donanımlar arasındaki iletişimlerin test edildiği strafor malzeme kullanılarak gerçekleştirilen bir endüstriyel robot tel kesme çalışması yapılmıştır. Yapılan çalışmanın parametrik tanım dosyası ve tasarım ürünü açıklanmıştır. Karma gerçeklik aracı üzerinden parametrik tasarım tanım dosyasının parametreleri değiştirilerek sonuçlar karma gerçeklik aracı üzerinden izlenebilmiş ve endsütriyel robot ile kurulan iletişim üzerinden robot kodu endüstriyel robota gönderilerek tasarlanan ürün tel kesme yöntemi ile üretilmiştir. Bu çalışma ile geliştirilen yazılımların doğru sonuçlar ürettiği test edilmiş ve doğrulanmıştır. Yazılım geliştirme adımları tamamlandıktan sonra bir doğal taş üretim atölyesinde önerilen yöntemin bir modeli oluşturulmuştur. Parametrik modelleme araçları kullanılarak biçim grameri yöntemiyle tanımlanan bir tasarım ürünü, karma gerçeklik aracı ve endüstriyel robot kullanılarak tez çalışmasında önerilen yöntem ile üretilmiştir. Yedinci bölümde üretim ortamından elde edilen değerlendirme ve gözlem sonuçlarına dayanarak, önerilen yöntem ve mevcut diğer yöntemler karşılaştırılmış ve bir özellik karşılaştırma tablosu oluşturulmuştur. Tezde önerilen karma gerçeklik ortamında parametrik tasarım ve robotik fabrikasyon programlama yöntemi, çevrimdışı programlama yöntemi örneği olan Pike Loop Projesi çalışması ve parametrik robot kontrol araçları ile programlama yöntemi örneği olan Steel Bull of Speilberg çalışması üzerinden diğer yöntemler ile karşılaştırılmış ve yöntemin avantajları, eksik yönleri ve sayısal üretim alanında yöntemin sunduğu yenilikler tartışılmıştır. Yine bu bölümde tez kapsamında yapılacak ileri çalışmalara yer verilmiştir. Sonuç olarak tez çalışması kapsamında, gerekli tüm yazılım geliştirme adımları tamamlanarak, karma gerçeklik ortamında etkileşimli parametrik tasarım ve robotik fabrikasyon yöntemi geliştirilmiş ve önerilen yöntemin bir modeli gerçek bir üretim ortamında oluşturulmuştur. Üretim ortamından elde edilen değerlendirme ve gözlem sonuçları ile çalışmada öne sürülen yöntem ve mevcut diğer yöntemler karşılaştırılmıştır.
-
ÖgeMimari tasarım sürecinin erken aşamasında kullanılacak artırılmış gerçeklik uygulamalarının geliştirilmesi için bir yöntem önerisi(Lisansüstü Eğitim Enstitüsü, 2023-06-22) Durmazoğlu, M. Çağdaş ; Gül, Leman Figen ; 523082003 ; Mimari Tasarımda BilişimKişinin dünyayı algılamasında en fazla öneme sahip duyularından birisi olan görme duyusunu kullanarak gerçeğe en yakın deneyimleri sunma yolu olarak tercih edilen sinema sektöründe, daha önce görülmeyen ve deneyimlenmeyeni deneyimlemenin yollarını arayan Morton Heilig 1962 tarihinde geleceğin sineması olarak adlandırdığı izleyicilerinin tüm duyularına hitap edecek Sensorama adındaki ilk Sanal Gerçeklik deneyimini geliştirmiştir. Bu gelişmeden birkaç yıl sonra Uluslararası Bilgi İşlem Federasyonu Konferansında insanların mümkün olduğunca çok duyusuna hitap edebilecek, farkı veri girdi ve çıktı araçlarıyla uyumlu çalışabilen ve kullanıcısının bakış açısına göre görsel üretebilecek bir bilgisayar ekranının fiziksel dünyada deneyimleyemeyeceğimiz kavramları deneyimleyebilmemize olanak tanıyabileceği öne sürülmüştür. Bu öngörü günümüzde Karma Gerçeklik (KG) olarak tanımlanan ve Artırılmış Gerçeklik (AG) ve Sanal Gerçeklik (SG) alanlarını kapsayan, yapay/bilgisayar tarafından üretilmiş çevrelerin geliştirilmesinin temelini oluşturmuştur. Kullanıcılarını tamamen sarmalayan ve onların tüm duyularına hitap ederek yapay olarak üretilen bir ortamı deneyimlemelerine olanak tanıyan SG kavramı yıllar içerisinde alt bölümlere ayrılarak kullanıcıların yeni deneyimler edinebilecekleri farklı çevrelerin geliştirildiği bir araştırma alanı haline gelmiştir. Bu araştırma alanının alt başlıklarından birisi olan AG kavramı ise SG'nin aksine kullanıcıların tamamen yapay bir çevrede değil, gerçek mekanda bulunan nesnelerle ilgili farkındalıklarının, bilgisayar yardımıyla üretilen bilgi katmanlarının gerçek çevreye veya gerçek çevrede bulunan nesnelere eklenerek deneyimlenmesi ve artırılmasını sağlayan teknolojilerin açıklanmasında kullanılmaktadır. Sağlık, turizm, eğlence, savunma, bakım ve onarım, eğitim, tasarım gibi birçok alanda kullanılan AG sistemlerinden kullanıcıların motivasyonunu artırmak, öğrenme deneyimlerini zenginleştirmek ve iyileştirmek, mekansal farkındalıklarını ve 3 boyutlu düşünme becerilerini artırmak, görevlerini daha verimli bir şekilde gerçekleştirmelerini sağlamak, fikirlerini hızlı bir şekilde görselleştirmelerine, değerlendirmelerine ve paylaşmalarına yardımcı olmak gibi amaçlarla faydalanılmaktadır. Tasarım sürecinde kullanıcıya avantaj sağlayacak bu özelliklere sahip olması nedeniyle AG teknolojisi geleneksel ve dijital tasarım yöntem ve araçlarının kendilerine özgü güçlü yanlarını bünyesine katarak özellikle tasarım sürecinin erken aşamalarında bu iki yöntemi birleştirebilecek bir köprü vazifesi görebilme potansiyeline sahiptir. Bu doktora tezinde mimari tasarım sürecinin erken aşamasında kullanılacak AG uygulamalarının geliştirilme sürecinde kullanılabilecek yeni bir yöntem önerisi geliştirilmiştir. Önerilen yöntem izlenerek geliştirilen AG uygulamasının kullanıldığı tasarım egzersizlerinde elde edilen veri analiz edilerek geliştirilen uygulamanın kullanılabilirliğinin hangi yöntemler kullanılarak değerlendirilebileceği ve bu uygulamanın ne gibi özelliklere sahip olması gerektiği araştırma sorularına cevap aranmıştır. Tez altı ana bölümden oluşmaktadır. Birinci bölümde motivasyon, araştırma soruları, tezin amacı, metodolojisi ve tezin literatüre katkısı ve yaygın etkisi ele alınmıştır. İkinci bölümde AG kavramı ve teknolojik değişimlerin bu paradigmaya etkisi tasarım perspektifinden ele alınmıştır. Ek olarak, AG sistemlerinin bileşenleri ve bileşenlerin avantajları ve sınırlamaları bir geliştiricinin bakış açısıyla tartışılmaktadır. Daha sonra AG teknolojilerinin kullanım alanları, mimarlık disiplinine odaklanılarak yapılan literatür taraması üzerinden örneklerle tartışılmıştır. Üçüncü bölümde "MimAR" uygulamasının geliştirme süreci anlatılmaktadır. Öncelikle Birleşik Modelleme Dili (BMD) kavramı seçilen diyagramlarla örneklendirilerek tanıtılmıştır. Ardından uygulamanın yer/yönelim değişimi ve nesne modifikasyonu gibi çeşitli özellikleri sunulmakta ve açıklanmaktadır. "MimAR" uygulamasının sürekli ve döngüsel geliştirme sürecinde gerçekleştirilen iyileştirmeler sonucu geliştirilen farklı versiyonlar, kullanıcı geri bildirimi ve görselleştirme gibi konularda yapılan iyileştirmelere odaklanılarak sunulmuştur. Son olarak "MimAR" uygulamasının Grafik Kullanıcı Arayüzü (GKA) anlatılmıştır. Dördüncü bölümde, kullanılabilirlik kavramı ve kullanılabilirliği ölçmek için kullanılan farklı yöntemler açıklanmaktadır. Ayrıca farklı kullanılabilirlik yöntemleri karşılaştırılarak çalışma kapsamında Mobil Artırılmış Gerçeklik Kullanılabilirlik Ölçüsü (MAGKÖ), Sistem Kullanılabilirlik Ölçüsü (SKÖ) ve NASA İş Yükü Endeksi anketlerinin tercih edilme nedenleri açıklanmıştır. Beşinci bölüm "MimAR"ın pilot çalışmalar ve deneysel çalışma ile değerlendirilme sürecinden oluşmaktadır. Ana çalışmadan önce, kullanılacak anketlerin anlaşılabilirliğini, uygulamanın kullanılabilirliğini ve deney kurgusunda herhangi bir değişikliğe gerek olup olmadığını değerlendirmek amacıyla pilot çalışmalar yapılmıştır. Pilot çalışmaların sonuçları ilgili bölümlerde açıklandıktan sonra, elde edilen sonuçlardan yola çıkılarak deneysel araştırmanın kurgusu ve anketlerde yapılan iyileştirmeler sunulmuştur. Bölümde daha sonra yer alan üç alt bölümde ise gönüllü katılımcılarla gerçekleştirilen ana çalışma kapsamında yapılan kullanılabilirlik, zihinsel iş yükü ve kullanıcıların tercihlerini belirlemeye yönelik gerçekleştirilen regresyon analizi çalışmaları ve sonuçları sunulmaktadır. Altıncı bölümde tez kapsamında elde edilen sonuçlar kullanılabilirlik, kullanıcı tercihleri ve nitel kullanıcı geri bildirimlerine odaklanılarak tartışılmaktadır. Elde edilen sonuçlar, öncelikle doktora tezi sırasında izlenen uygulama geliştirme sürecinin başarılı ve uygulanabilir olduğunu göstermiştir. Uygulamanın kullanılabilirliğinin her zaman kabul edilebilir seviyede olması için geliştirme sürecinin sürekli ve döngüsel olması ve uygulamanın kullanılabilirliği ve iş yükünün süreç boyunca değerlendirilmesi gerekmektedir. İkinci olarak, araştırmacı tarafından tez kapsamında geliştirilen AG uygulaması, uygulamayı deneysel çalışma kapsamında erken tasarım evresinde kullanan katılımcılar tarafından MAGKÖ ve SKÖ anketleri kullanılarak kullanılabilirlik açısından değerlendirilmiş ve uygulamanın kabul edilebilir seviyede olduğu sonucu elde edilmiştir. Üçüncü olarak "MimAR"ın algılanan iş yükünün katılımcılar tarafından kabul edilebilir seviyede olduğu sunucu elde edilmiştir. Son olarak ise, erken mimari tasarım sürecinde kullanılmak üzere geliştirilen AG uygulamalarından kullanıcıların beklentilerinin tanımlanması için gerçekleştirilen çoklu doğrusal regresyon analizi sonucunda elde edilen modeller değerlendirildiğinde işaretleyiciler, etkileşim yöntemleri, nesne özellik modifikasyonu, grafik kullanıcı arayüzü özellikleri ve yazılım özelliği temalarının kullanıcıların bu teknolojiyi kabullenmelerinde etkisinin bulunduğu sonucuna varılmıştır.
-
ÖgeMimarlık eğitiminde farklı medyalar için bütünleşik bir model önerisi(Lisansüstü Eğitim Enstitüsü, 2024-11-12) Takkeci, Mehmet Sarper ; Erdem, Arzu ; 523122001 ; Mimari Tasarımda BilişimMimarlık tasarım stüdyoları, mimarlık eğitiminde kritik bir role sahip olan, teorik ve teknik bilgilerin uygulamaya döküldüğü platformlardır. Bu stüdyolar, öğrencilerin proje tabanlı, aktif öğrenme süreçleriyle karşılaştığı, yaratıcı ve eleştirel düşünmeye yönlendirildiği mekanlardır. Geleneksel tasarım stüdyolarının fiziksel alanları ve sosyal etkileşimleri, pedagojik yaklaşımların çeşitlenmesine ve derinleşmesine olanak tanır. Stüdyo ortamı, öğrencilerin farklı eğitim yaklaşımları ve öğrenme durumlarına maruz kaldığı, çeşitliliğin ön planda olduğu bir yapıya sahiptir. Bu yapı, açık uçlu ve geniş içerikli eğitim anlayışını barındırır. Öğrencilere sunulan "tasarım problemi", genellikle açık uçlu ve belirsizdir, bu da öğrencilerin kendi çözüm yollarını geliştirmelerini gerektirir. Öğrenme süreci, yürütücülerin pedagojik yaklaşımları ve geri bildirim oturumları üzerinden ilerler. Bu süreçte öğrenciler, bilgiyi içselleştirir ve becerilerini geliştirir. Stüdyo ortamının ve iletişim süreçlerinin pedagojik çerçevedeki önemi büyüktür. Stüdyo, öğrencilerin projeler üzerinde yoğunlaştığı, eşit katılım ve diyalogun ön planda olduğu bir alan olarak işlev görür. Bu ortamda öğrenciler, akranları ve yürütücülerle sürekli etkileşim içinde bulunur, bu da öğrenme deneyimlerini zenginleştirir. Stüdyo, gerçek veya hipotetik konular üzerinden kurulabilir ve öğrencilere çeşitli bilgi alanlarından yararlanma fırsatı sunar. Sosyal bir ortam olan stüdyo, öğrencilere bilgi ve becerilerini test etme ve geliştirme şansı verir. Stüdyo, öğrencilerin fikirlerini ifade etmeleri ve tartışmaları için uygun bir zemin hazırlar. Stüdyonun öğrenme yaklaşımı, problemi sorgulama aracı olarak görür ve işbirlikçi, çok katılımcılı bir ortamda gerçekleşir. Stüdyo, bilgi ve beceri geliştirmeyi teşvik eder ve "yaparak öğrenme" kültürünü destekler. "Mimarlık stüdyo kültürü" terimi, yaratıcılığı, işbirliğini ve eleştirel düşünmeyi teşvik eden bir öğrenme deneyimi ile karakterize edilir. Bu kültür, öğrencilerin tasarım önerilerini araştırdıkları, test ettikleri ve sundukları bir yerdir. Yaparak öğrenme odaklı eğitim, öğrencilerin çevrelerini anlamalarına ve yeniden düşünmelerine olanak sağlar. Mimarlık eğitimi, problem çözme odaklı geleneksel yöntemlerin ötesine geçerek, tasarım epistemolojisini yeniden düşünmeyi gerektirir. COVID-19 pandemisi, tasarım eğitiminin yapısında önemli değişikliklere neden olmuştur. Fiziksel etkileşim gereksinimlerinin zorlukları, çevrimiçi eğitim yöntemlerine geçişi zorunlu kılmıştır. Bu durum, stüdyo yürütücülerinin öğretme ve öğrenme yöntemlerini yeniden değerlendirmelerini gerektirmiştir. Çevrimiçi eğitim, fiziksel stüdyonun özelliklerini taklit etmeyi ve çevrimiçi alışverişleri kolaylaştırmayı amaçlamıştır. Fiziksel tasarım stüdyosu, mimarlık eğitiminin kültürel ve sosyo-mekansal bir parçası olarak, öğrencilerin akranlar arası öğrenmeyi teşvik eden bir ortam sağlar. Ancak, çevrimiçi ortama geçişle, bu akran öğrenme fırsatlarında eksiklikler gözlemlenmiştir. Çevrimiçi ortamda, fiziksel bir ortamın yokluğunda, yeni bir bağlantıcı pedagoji devreye girmiştir. Bu pedagoji, bilgi kaynaklarına bağlantı, akranlarla ağ oluşturma ve dijital teknolojilerin entegrasyonu üzerine odaklanır. Fiziksel stüdyolardan sanal ortamlara geçişle, geleneksel fiziksel tasarım stüdyolarının sunduğu zengin iletişim ve akranlar arası öğrenme fırsatlarını güçlendirecek yeni pedagojik stratejilerin düşünülmesi gerekmektedir. Oyun tabanlı öğrenme ve oyunlaştırma, çevrimiçi öğrenme bağlamında öğrenenlerin katılımını artırmada kolaylaştırıcı olabilir. Bu yaklaşım, öğrencilerin bilgi ve becerilerini etkileşimli ve ilgi çekici bir şekilde edinmelerini sağlar. Sonuç olarak, çevrimiçi öğrenme, fiziksel tasarım stüdyosunun imkanlarını güçlendirecek yeni pedagojik stratejilerin düşünülmesini gerektirmiştir. Bu durum, yaparak öğrenme süreçlerinde, akran katılımı ve işbirlikçi deneyimler yoluyla derin öğrenmeyi destekleyen bir stüdyo kültürünü teşvik etmeye yönelik çevrimiçi uygulamaların entegrasyonuyla ilgili olmuştur. Oyun tabanlı öğrenme ve oyunlaştırma, öğrenme sürecini iyileştirmede potansiyel taşır. Oyun tabanlı öğrenme, öğrencilerin etkileşimli ve ilgi çekici bir şekilde bilgi ve beceri edinmelerini sağlar. Oyun mekaniği, öğretme ve öğrenmeye entegre edilerek, öğrenciler arasında akademik performansı ve motivasyonu artırabilir. Böylece, oyun tabanlı pedagoji, çevrimiçi öğrenmenin zorluklarıyla ilgilenmek için kullanılabilir. Bu yaklaşım, deneysel stüdyo uygulamalarında ve oyun tabanlı stratejilerde kullanışlı bir strateji haline gelmiştir. Sonuç olarak, bu tez, oyun tasarım ilkelerinin ve pedagojik unsurlarının mimarlık stüdyosunun karmaşık medya ekosistemine nasıl entegre edilebileceğini araştırmaktadır. Oyun tabanlı öğrenme, mimarlık eğitiminde yeni bir pedagojik yaklaşımın parçası olarak değerlendirilmektedir.
-
ÖgeSayısal ortamda yaparak tasarlamanın bir yordamı olarak katlamak(Lisansüstü Eğitim Enstitüsü, 2023-08-01) Bacınoğlu, Saadet Zeynep ; Erdem, Arzu ; 523122007 ; Mimari Tasarımda BilişimBu tez çalışması, tasarımcının fiziksel ortamda malzemeyi işlemek ve dönüştürmek için uyguladığı eylem(ler)i bir yapım ve tasarım tekniği geliştirmek için nasıl araçsallaştıracağını araştırır. Eylemin tasarım için araçsallaştırılması, sadece tasarlanmakta olan nesne üzerine düşünmenin ötesinde tasarlanmakta olanı ortaya çıkaran tasarımcının eylemi üzerine düşünmesini gerektirmektedir. Eylemin tasarım için tasarıma sağladıklarının sorgulanıp eylemin çeşitlendirilerek çoğaltılması ile bir tasarım ve yapım tekniğine dönüştürülmesidir. Yapım eylemi aracılığıyla tasarım için farklı parametrelerin tespit edilip bir nesne veya yüzey uzayında biçimsel ve işlevsel niteliklerin çeşitlendirilmesidir. Eylemin araçsallaştırılması ile geometrinin, malzeme yoğunluğunun, fonksiyonun çeşitlendiği sürekliliğe sahip heterojen tasarım ürünlerine varılabileceğini savunur. Savunulan tasarım yaklaşımı, hazır endüstriyel nesnelerin kolaj mantığı ile bir araya getirilmesinin karşısında durur. Parametrik ilişkisel modelleme tekniklerinin ise tasarım bağlamı ile ilişkilenerek tasarımın çeşitli veçhelerini kapsayıcı bir hesaplamalı çerçeveye nasıl dönüşebileceğini sorgular. Bir eylemi araçsallaştırmak için, ilişkisel modelleri kullanarak dijital ortamı erken tasarım süreci aşamasına dâhil eden ve tasarladığı nesneyi fiziksel ve dijital ortamlar arasında gidip gelerek geliştiren tasarımcılara özgün düşünsel süreçlere yönelik bir analitik çerçeve önerir. Çalışmanın önerdiği yaklaşım, söz konusu tasarım süreçlerini anlamak için "katlama" eylemine içkin potansiyelleri tartışmaya açmaktadır. Tasarım süreci sırasında tasarımcının, üzerinde çalıştığı malzeme ile fiziksel ortamda dolayımsız biçimde karşılaşması, tasarlanan nesneye özgü nitelikleri tarifleyen geometrik özellikler ve ilişkilerle dijital ortamda karşılaşması, önceden işleme sokulan tasarım girdileri ile yeni tasarım fikirlerinin tasarımcının zihinsel alanında karşılaşmaları, bu çalışmanın odaklandığı "katlama" eylemine içkin potansiyelleri tartışmak adına uygun bir zemin sunmaktadır. Tasarımcının zihinsel, fiziksel, dijital dünyalar arasında gidiş gelişler sırasında yaptığı değerlendirme ve hesaplamalar, tasarım formlarının birbirinin tekrarı olmaktan çıkarıp özgün bir tasarım ürünü olarak geliştirilebilmesinde etkendir. Bu gidiş gelişler esnasında katlama eyleminin kendisi, iki ve üç boyutlu düzlemde etkileşime giren formel ilişkiler ve zihinsel ortamda etkileşen tasarım fikirleri yinelenmektedir (katlanmaktadır). Dolayısıyla, bu çalışmanın incelediği tasarım örnekleminin ortaya çıkardığı bulgular, "katlama"nın fiziksel eylem ve kavramsal özelliklerine dayanan kuramsal bir model geliştirmek ve bu modelin pratik faydalarını vurgulamaktadır. Çalışmanın başlıca çıktısı olan bu kuramsal model, tasarım faaliyetinin gerçekleştiği zihinsel, fiziksel, dijital dünyalar ve temsiller arası gidiş gelişlerin fikir, biçim (formel ilişki), malzeme bağlamında yinelemeleri devreye soktuğu ve bu sayede tasarım süreçlerinin yöneleceği keşif rotalarının çoğalabileceğini öne sürmektedir. Modeli temellendirmek için yaparak tasarlamak, katlayarak tasarlamak, bir bağlam olarak katlamak ana başlığıyla üç arkaplan çalışması yapılmıştır. Modele temel oluşturması için öncelikle fiziksel ve dijital bağlamda tasarım aktivitesinin yaparak icra edilmesi konusunda kuramsal bir araştırma yapılmış. İkinci bölüm olan Katlayarak Tasarlamak başlığı altında ise tasarım bağlamı içerisinde katlamanın üç farklı biçimde ele alındığı örnekler tartışılmıştır. Bu örneklerden yola çıkarak, tasarım bağlamında üç farklı düzlemde katlamanın gerçekleştiği bir çerçeve çizilmiştir. Bu çerçeve sürecinde gerçek anlamıyla katlamanın nasıl uygulanacağına dair prosedürel bilginin araştırılması bir sonraki bölümde yapılmıştır. En son olarak önerilen çerçeve bağlamında üç örnek çalışması retrospektif olarak önerilen çerçeve üzerinden incelenmiştir. İncelenen üç örnek, ilişkisel modelin tasarım sürecinin farklı aşamalarında etken olduğu çalışmalardır. Birinci çalışmada tasarım süreci başından itibaren geometrik ilişkileri modelleyerek ve tasarıma dair farklı katmanları ilişkisel model üzerine aktararak gerçekmiş ve fiziksel üretim bu sürecin kısıtlı bir bölümünde karar alıp sürecin gidişatında etkili olmuştur. İkinci çalışma ise fiziksel ortamdaki yaparak tasarlama sürecinde tespit edilen tasarım parametrelerinin en son ilişkisel modele kodlandığı bir süreçtir. Üçüncü çalışma ise bir yapım eyleminin dijital ortamda gerçekleşmesi için sürecin başında eylemin ilişkisel bir modelinin yapılıp, böylece ön-rasyonalizasyonu yapılan eyleminin dijital ortamda bir tasarım aracı olarak ardışık kullanımlarıyla bütüne varılan bir çalışmadır.