LEE- Gemi İnşaatı ve Gemi Makinaları Mühendisliği-Yüksek Lisans
Bu koleksiyon için kalıcı URI
Gözat
Yazar "Bal, Şakir" ile LEE- Gemi İnşaatı ve Gemi Makinaları Mühendisliği-Yüksek Lisans'a göz atma
Sayfa başına sonuç
Sıralama Seçenekleri
-
ÖgeComputational analysis of 2-d foils with and without ground effect in tandem(Graduate School, 2024-12-26) Delikan, Mehmet ; Bal, Şakir ; 508221003 ; Naval Architecture and Marine EngineeringThe flow behavior around tandem foils, both with and without ground effect, remains a complex and significant area of study, particularly as it plays a critical role in the design and development of wing-in-ground effect vehicles, sailing yachts, and hydrofoil vessels. Most existing numerical and experimental research on tandem configurations has been conducted at high Reynolds numbers exceeding 10⁶. In this comprehensive parametric study, the 2-D flow around two tandem NACA 4412 foils is simulated under both ground effect and free-flow conditions at a moderate Reynolds number of (Re = 3 × 10⁵). The angle of attack is fixed at 4° for both foils, and the effects of stagger distance (S), gap height (G), and ground clearance (H) are systematically investigated to assess their influence on the aero/hydrodynamic characteristics of the tandem system. The analysis begins by validating the aero/hydrodynamic performance of a single NACA 4412 foil without ground effect, followed by validation with ground effect. This step ensures the robustness of the computational framework before extending the analysis to tandem configurations. The incompressible RANS equations are solved using the finite-volume method, employing the SST k-ω turbulence model, which includes the γ-transport equation for enhanced turbulence modeling. This methodology enables a detailed examination of flow structures, pressure distributions, and the overall interaction between the foils in tandem arrangements under varying geometrical configurations. The results demonstrate that, consistent with findings from higher Reynolds number studies, tandem foils exhibit improved hydrodynamic efficiency compared to isolated foils, particularly when the gap height is positive, i.e., when the fore foil is positioned above the aft foil. Ground effect improves the aero/hydrodynamic performance of both isolated and tandem foils by enhancing lift and reducing drag. This phenomenon results in superior performance metrics compared to configurations operating outside of ground effect. In the tandem arrangement, the presence of the aft foil reduces drag on the fore foil due to increased static pressure between the foils, effectively exerting an upstream force on the fore foil. Conversely, the aft foil experiences an increase in drag due to the influence of the fore foil, a phenomenon observed across most tested configurations, with variations depending on stagger and gap distances. The interference effects between the tandem foils produce a range of outcomes; depending on the spacing, these effects can be either favorable or unfavorable in terms of drag reduction and overall aerodynamic performance. The effect of ground clearance on tandem foil configurations exhibits a similar trend to its influence on isolated foils in ground effect, characterized by an increase in both lift and drag coefficients as ground clearance decreases. These findings suggest that optimized tandem configurations can achieve significantly enhanced lift-to-drag ratios, particularly under positive gap heights, offering potential for performance improvements in wing-in-ground effect vehicles and other marine and aerospace applications. This research provides novel insights into the hydrodynamics of tandem foils operating at moderate Reynolds numbers in both ground-effect and out-of-ground-effect conditions. The outcomes of this investigation contribute to the ongoing development of next-generation wing-in-ground effect craft, hydrofoil systems, and other high-performance applications where tandem foil configurations can be utilized.
-
ÖgeDARPA denizaltı modelinde derinliğe bağlı olarak değişen hidrodinamik manevra türevlerinin ve yatay stabilitenin incelenmesi(Lisansüstü Eğitim Enstitüsü, 2022-04-20) Çavdar, Furkan ; Bal, Şakir ; 508191008 ; Gemi İnşaatı ve Gemi Makinaları MühendisliğiBu tezde DARPA Denizaltı geometrisinin derinliğe göre değişen hidrodinamik manevra türevleri tespit edilmiş ve derinliğe göre değişen yatay stabilitesi incelenmiştir. Denizaltılar, seyir halindeyken dip ve yüzey (serbest yüzey) etkilerinden kaçınılması tercih edilir. Denizaltıların genellikle radar tarafından tespit edilememe ve yakıt tasarrufu gibi nedenlerle derin sularda seyretmesi gerekir. Ancak denizaltılar her zaman bu koşullarda çalışamayacaklardır, çünkü taze hava gereksinimi ve bataryaların şarj edilmesi gibi sebeplerle şnorkel halde bulunmaları gerekmektedir. Bu nedenle denizaltıların derinliklerde yüzeye yakın hareket ve manevra kabiliyetlerinin belirlenmesi gerekmektedir. Bu çalışmada su yüzeyine yakın derinliklerdeki seyir hareketlerinde oluşacak ilave direncin denizaltı performansına olan etkileri araştırılmıştır. Havuz ve direnç testleri ile deneysel ve HAD analiz çalışmaları doğrulanmış, daha sonra DSM (DARPA SUBOFF MODEL) üzerinde yatay eksende gövde ve dümen geometrilerinin hidrodinamik katsayıları hesaplanmıştır. Bilindiği üzere, DARPA Denizaltı modeli derin suda yatay stabiliteye sahip değildir. Bu çalışmada, denizaltı modelinin periskop (şnorkel) seyri esnasında veya su yüzeyine yakın hareket ederken yatay stabilitesi 3 serbestlik dereceli olarak tespit edilmiştir. Öncelikle, sistemin matematik modeli hakkında bilgi verilmiş ve denizaltı için ana büyüklükler ve boyutsuzlaştırma terimleri paylaşılmıştır. Denizaltı modeli, üç boyutlu olarak takıntılarıyla birlikte oluşturulmuştur. Üç boyutlu modellerde DARPA tarafında geliştirilen geçen kıç takıntısız model ve kıç takıntılı model kullanılmıştır. Denizaltı stabilitesi ve hidrodinamik manevra türevleri tespit edilirken farklı yüksekliklerde yanal öteleme kuvvetine ait doğrusal katsayılar ve savrulma açısal momentine ait doğrusal katsayılar kullanılmıştır. Farklı derinlikler 1.1D, 2.2D, 3.3D ve 6D olarak seçilmiştir. Bahsi geçen katsayılar hesaplamalı akışkanlar dinamiği programıyla çeşitli sistematik analizler yapılarak elde edilmiştir. Hesaplamalı analizlerde gerekli doğrulama ve geçerleme çalışmaları da yapılmıştır. Doğrulama çalışmalarında ağdan bağımsızlık çalışması, hacim belirleme çalışması, ortalama Reynolds Navier-Strokes türbülans modelleri karşılaştırması, analiz adımı karşılaştırması, analiz süresi karşılatırması gibi çeşitli analizler yapılmıştır. Analiz doğrulamaları yapılırken üç boyutlu geometrik modele ait manevra deneysel verileri kullanılmış ve yukarıda da belirtilen takıntısız ve takıntılı kıç olmak üzere iki farklı geometri modeline göre analizler değişik derinliklerde karşılaştırılmış, yüzde farklar olarak ifade edilmiştir. Hesaplamalı akışkanlar dinamiği analizlerinde elde edilmesi planlanan hidrodinamik türevler boyuna kuvvet katsayıları, yanal kuvvet katsayıları ve savrulma moment katsayıları olarak belirlenmiş olup doğrusal modelde X0, Xv, Xd, Xẟ, Yv, Yr, Yẟ, Nv, Nr ve Nẟ katsayılarının belirlenmesi amaçlanarak hidrodinamik model oluşturulmuştur. Farklı derinliklere göre elde edilen hidrodinamik türevler ile yatay stabilitenin tespiti yapılmıştır. Yatay stabilite tespiti dışında dümen kuvvetlerinin etkisini modele eklemek için dümen kuvvet ve moment katsayıları tayin edilmiştir. Denizaltı modelinin, su yüzeyine yakın seyir durumlarında yatay stabiliyete sahip olduğu ve 4.6D derinlikten itibaren ise yatay stabilitesini kaybettiği bulunmuştur. Daha sonra denizaltı modelinin su yüzeyine yakın manevra performansını anlamak için denizaltı modelinin farklı derinliklerde elde edilen hidrodinamik türevlerine eğriler türetilerek üç serbestlik dereceli manevra simülasyonuna adapte edilmiştir. Denizaltı modelinde yatay stabilite için bu düzlemdeki kararlılık derecesi gereklidir. Bu problem doğrusal sistem için sayısal olarak çözülmüştür. Tasarlanan model için geçmişte yapılmış uygun çalışmalar mevcuttur. Bu tezde de bu çalışmalar kullanılarak doğrulama ve gerçekleme analizleri yapılmıştır. Doğrusal modelin hidrodinamik katsayı seti, HAD analizlerinden elde edilmiş ve üç serbestlik dereceli manevra simülasyon yönüne bağlı olarak işlenmiştir. Denizaltı modelinin değişen derinliklerine göre farklı katsayılara sahip olduğu görülmektedir. Manevra simülasyonunda statik ve dinamik manevra cevapları farklı derinliklere göre incelenmiştir. Dinamik manevra analizleri neticesinde hız azalması ve dönme çapı test değerleri elde edilmiştir. Bahsi geçen testler sabit itki kuvveti altında yapılmıştır. Testler sonucunda görülmektedir ki denizaltı su yüzeyine yaklaştıkça hidrodinamik direnç artmakta ve sabit itki altında daha fazla hız azalması ile karşılaşmaktadır. Ayrıca yüzeye yakın seyir halinde yanal öteleme hızına bağlı olarak denizaltının manevra performansında farklılık gözlenmektedir. Testler sonucunda denizaltı su yüzeyine yaklaştıkça hidrodinamik direncinin arttığı ve sabit itme altında daha fazla hız düşüşü ile karşılaştığı görülmüştür. Ayrıca, yüzeye yakın seyir sırasındaki yanal öteleme hızına bağlı olarak denizaltının manevra performansında da bir fark gözlemlenmektedir. Bu durum, su üstü platformlarının manevra performansı ile kıyaslanmamalıdır. Ancak bu tez çalışmasında bilgi vermek amacıyla denizaltı modeli su üstü platformlarının kriterlerine göre karşılaştırılmıştır. Denizaltı modelinin bu kriterlerden bazılarına uyduğu, bazılarıyla uyumlu olmadığı görülmektedir. Tezin eklerinde matematiksel modelin türetilmesi verimiştir. Ayrıca tezde deney verilerinde kullanılan ancak tezde yer almayan Y ve N eksenleri ile ilgili değerler de ekler bölümünde paylaşılmıştır. Daha sonra tez çalışması tamamlanmıştır. Yatay stabilite sayısının kararlı olduğu bölgede, denizaltı manevra performansı ile ters ilişki içinde olduğu bilinmektedir. Bu sebeple çalışmada artan yatay stabilite katsayısına göre yatay stabilitenin kararlı olduğu bölgede manevra performansı değerlendirilmiş olup daha önceki çalışmalara uygun, yatay stabiliye sayısı ve manevra performansı arasındaki ilişki gösterilmiştir. Yatay stabilitenin aşırı kararlı ve kararsız olduğu bölgelerdeki durumların değerlendirilmesi de çalışmanın konularındandır. Sonuç olarak, DARPA denizaltı modeline ait farklı derinliklerde üç serbestlik dereceli sistem için doğrusal manevra türevleri ve dümen katsayıları belirlenmiştir. DARPA denizaltı modeli için yatay stabilite katsayısı hesaplanmış ve yüzeye yakın seyir halinde yatay stabilitenin mevcut olduğu bulunmuştur. Ayrıca, nodelin yüzeye yakın derinliklerde seyir halindeyken manevra performansı incelenmiş ve farklı derinliklere göre gerekli karşılaştırılmalar verilmiştir.